ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.08514
10
82

Filter Sketch for Network Pruning

23 January 2020
Mingbao Lin
Liujuan Cao
Shaojie Li
QiXiang Ye
Yonghong Tian
Jianzhuang Liu
Q. Tian
Rongrong Ji
    CLIP
    3DPC
ArXivPDFHTML
Abstract

We propose a novel network pruning approach by information preserving of pre-trained network weights (filters). Network pruning with the information preserving is formulated as a matrix sketch problem, which is efficiently solved by the off-the-shelf Frequent Direction method. Our approach, referred to as FilterSketch, encodes the second-order information of pre-trained weights, which enables the representation capacity of pruned networks to be recovered with a simple fine-tuning procedure. FilterSketch requires neither training from scratch nor data-driven iterative optimization, leading to a several-orders-of-magnitude reduction of time cost in the optimization of pruning. Experiments on CIFAR-10 show that FilterSketch reduces 63.3% of FLOPs and prunes 59.9% of network parameters with negligible accuracy cost for ResNet-110. On ILSVRC-2012, it reduces 45.5% of FLOPs and removes 43.0% of parameters with only 0.69% accuracy drop for ResNet-50. Our code and pruned models can be found at https://github.com/lmbxmu/FilterSketch.

View on arXiv
Comments on this paper