ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.09876
  4. Cited By
The POLAR Framework: Polar Opposites Enable Interpretability of
  Pre-Trained Word Embeddings
v1v2 (latest)

The POLAR Framework: Polar Opposites Enable Interpretability of Pre-Trained Word Embeddings

27 January 2020
Binny Mathew
Sandipan Sikdar
Florian Lemmerich
M. Strohmaier
ArXiv (abs)PDFHTML

Papers citing "The POLAR Framework: Polar Opposites Enable Interpretability of Pre-Trained Word Embeddings"

18 / 18 papers shown
Title
Profiling Bias in LLMs: Stereotype Dimensions in Contextual Word Embeddings
Profiling Bias in LLMs: Stereotype Dimensions in Contextual Word Embeddings
Carolin M. Schuster
Maria-Alexandra Dinisor
Shashwat Ghatiwala
Georg Groh
164
2
0
25 Nov 2024
Rethinking Node Representation Interpretation through Relation Coherence
Rethinking Node Representation Interpretation through Relation Coherence
Ying-Chun Lin
Jennifer Neville
Cassiano Becker
Purvanshi Metha
Nabiha Asghar
Vipul Agarwal
66
0
0
01 Nov 2024
Disentangling Hate Across Target Identities
Disentangling Hate Across Target Identities
Yiping Jin
Leo Wanner
Aneesh Moideen Koya
50
0
0
14 Oct 2024
Axis Tour: Word Tour Determines the Order of Axes in ICA-transformed
  Embeddings
Axis Tour: Word Tour Determines the Order of Axes in ICA-transformed Embeddings
Hiroaki Yamagiwa
Yusuke Takase
Hidetoshi Shimodaira
62
2
0
11 Jan 2024
Discovering Universal Geometry in Embeddings with ICA
Discovering Universal Geometry in Embeddings with ICA
Hiroaki Yamagiwa
Momose Oyama
Hidetoshi Shimodaira
58
15
0
22 May 2023
Similarity of Neural Network Models: A Survey of Functional and Representational Measures
Similarity of Neural Network Models: A Survey of Functional and Representational Measures
Max Klabunde
Tobias Schumacher
M. Strohmaier
Florian Lemmerich
187
75
0
10 May 2023
SensePOLAR: Word sense aware interpretability for pre-trained contextual
  word embeddings
SensePOLAR: Word sense aware interpretability for pre-trained contextual word embeddings
Jan Engler
Sandipan Sikdar
Marlene Lutz
M. Strohmaier
85
7
0
11 Jan 2023
Explainability of Text Processing and Retrieval Methods: A Critical
  Survey
Explainability of Text Processing and Retrieval Methods: A Critical Survey
Sourav Saha
Debapriyo Majumdar
Mandar Mitra
96
5
0
14 Dec 2022
Discovering Differences in the Representation of People using
  Contextualized Semantic Axes
Discovering Differences in the Representation of People using Contextualized Semantic Axes
L. Lucy
Divya Tadimeti
David Bamman
88
11
0
21 Oct 2022
Lex2Sent: A bagging approach to unsupervised sentiment analysis
Lex2Sent: A bagging approach to unsupervised sentiment analysis
Kai-Robin Lange
Jonas Rieger
Carsten Jentsch
SSL
36
2
0
26 Sep 2022
Interpreting Embedding Spaces by Conceptualization
Interpreting Embedding Spaces by Conceptualization
Adi Simhi
Shaul Markovitch
97
7
0
22 Aug 2022
The Need for Interpretable Features: Motivation and Taxonomy
The Need for Interpretable Features: Motivation and Taxonomy
Alexandra Zytek
Ignacio Arnaldo
Dongyu Liu
Laure Berti-Equille
K. Veeramachaneni
FAttXAI
84
14
0
23 Feb 2022
Interpretable contrastive word mover's embedding
Interpretable contrastive word mover's embedding
Ruijie Jiang
J. Gouvea
Eric L. Miller
David M. Hammer
Shuchin Aeron
43
2
0
01 Nov 2021
Understanding and Countering Stereotypes: A Computational Approach to
  the Stereotype Content Model
Understanding and Countering Stereotypes: A Computational Approach to the Stereotype Content Model
Kathleen C. Fraser
I. Nejadgholi
S. Kiritchenko
74
41
0
04 Jun 2021
Are Interpretations Fairly Evaluated? A Definition Driven Pipeline for
  Post-Hoc Interpretability
Are Interpretations Fairly Evaluated? A Definition Driven Pipeline for Post-Hoc Interpretability
Ninghao Liu
Yunsong Meng
Helen Zhou
Tie Wang
Bo Long
XAIFAtt
79
7
0
16 Sep 2020
Adversarial Attacks and Defenses: An Interpretation Perspective
Adversarial Attacks and Defenses: An Interpretation Perspective
Ninghao Liu
Mengnan Du
Ruocheng Guo
Huan Liu
Helen Zhou
AAML
63
8
0
23 Apr 2020
Word Equations: Inherently Interpretable Sparse Word Embeddingsthrough
  Sparse Coding
Word Equations: Inherently Interpretable Sparse Word Embeddingsthrough Sparse Coding
Adly Templeton
34
7
0
08 Apr 2020
FrameAxis: Characterizing Microframe Bias and Intensity with Word
  Embedding
FrameAxis: Characterizing Microframe Bias and Intensity with Word Embedding
Haewoon Kwak
Jisun An
Elise Jing
Yong-Yeol Ahn
78
44
0
20 Feb 2020
1