ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.10398
  4. Cited By
A Kernel Mean Embedding Approach to Reducing Conservativeness in
  Stochastic Programming and Control
v1v2 (latest)

A Kernel Mean Embedding Approach to Reducing Conservativeness in Stochastic Programming and Control

28 January 2020
Jia Jie Zhu
Moritz Diehl
Bernhard Schölkopf
ArXiv (abs)PDFHTML

Papers citing "A Kernel Mean Embedding Approach to Reducing Conservativeness in Stochastic Programming and Control"

2 / 2 papers shown
Title
Hilbert Space Embedding-based Trajectory Optimization for Multi-Modal
  Uncertain Obstacle Trajectory Prediction
Hilbert Space Embedding-based Trajectory Optimization for Multi-Modal Uncertain Obstacle Trajectory Prediction
Basant Sharma
Aditya Sharma
K. M. Krishna
A. K. Singh
70
1
0
12 Oct 2023
Worst-Case Risk Quantification under Distributional Ambiguity using
  Kernel Mean Embedding in Moment Problem
Worst-Case Risk Quantification under Distributional Ambiguity using Kernel Mean Embedding in Moment Problem
Jia Jie Zhu
Wittawat Jitkrittum
Moritz Diehl
Bernhard Schölkopf
33
11
0
31 Mar 2020
1