Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.00211
Cited By
Learning to Detect Malicious Clients for Robust Federated Learning
1 February 2020
Suyi Li
Yong Cheng
Wei Wang
Yang Liu
Tianjian Chen
AAML
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning to Detect Malicious Clients for Robust Federated Learning"
50 / 88 papers shown
Title
Robust Federated Learning Against Poisoning Attacks: A GAN-Based Defense Framework
Usama Zafar
André Teixeira
Salman Toor
FedML
AAML
54
0
0
26 Mar 2025
Moss: Proxy Model-based Full-Weight Aggregation in Federated Learning with Heterogeneous Models
Y. Cai
Ziqi Zhang
Ding Li
Yao Guo
Xiangqun Chen
48
0
0
13 Mar 2025
Runtime Backdoor Detection for Federated Learning via Representational Dissimilarity Analysis
X. Zhang
Xiaoyong Xue
Xiaoning Du
Xiaofei Xie
Y. Liu
Meng Sun
FedML
AAML
60
0
0
06 Mar 2025
FedSV: Byzantine-Robust Federated Learning via Shapley Value
Khaoula Otmani
Rachid Elazouzi
Vincent Labatut
FedML
AAML
80
2
0
24 Feb 2025
FedNIA: Noise-Induced Activation Analysis for Mitigating Data Poisoning in FL
Ehsan Hallaji
R. Razavi-Far
M. Saif
AAML
43
0
0
23 Feb 2025
FedEAT: A Robustness Optimization Framework for Federated LLMs
Yahao Pang
Xingyuan Wu
Xiaojin Zhang
Wei Chen
Hai Jin
FedML
77
0
0
17 Feb 2025
Decoding FL Defenses: Systemization, Pitfalls, and Remedies
M. A. Khan
Virat Shejwalkar
Yasra Chandio
Amir Houmansadr
Fatima M. Anwar
AAML
38
0
0
03 Feb 2025
FedCLEAN: byzantine defense by CLustering Errors of Activation maps in Non-IID federated learning environments
Mehdi Ben Ghali
R. Bellafqira
G. Coatrieux
AAML
FedML
41
0
0
21 Jan 2025
Fine-Tuning Personalization in Federated Learning to Mitigate Adversarial Clients
Youssef Allouah
Abdellah El Mrini
R. Guerraoui
Nirupam Gupta
Rafael Pinot
FedML
27
0
0
30 Sep 2024
Leveraging Pre-trained Models for Robust Federated Learning for Kidney Stone Type Recognition
Iván Reyes-Amezcua
Michael Rojas-Ruiz
Gilberto Ochoa-Ruiz
Andres Mendez-Vazquez
C. Daul
21
0
0
30 Sep 2024
Data Distribution Shifts in (Industrial) Federated Learning as a Privacy Issue
David Brunner
Alessio Montuoro
FedML
18
0
0
20 Sep 2024
Data Poisoning and Leakage Analysis in Federated Learning
Wenqi Wei
Tiansheng Huang
Zachary Yahn
Anoop Singhal
Margaret Loper
Ling Liu
FedML
SILM
18
0
0
19 Sep 2024
BoBa: Boosting Backdoor Detection through Data Distribution Inference in Federated Learning
Ning Wang
Shanghao Shi
Yang Xiao
Yimin Chen
Y. T. Hou
W. Lou
FedML
AAML
25
1
0
12 Jul 2024
DART: A Solution for Decentralized Federated Learning Model Robustness Analysis
Chao Feng
Alberto Huertas Celdrán
Jan von der Assen
Enrique Tomás Martínez Beltrán
Gérome Bovet
Burkhard Stiller
OOD
AAML
48
8
0
11 Jul 2024
Non-Cooperative Backdoor Attacks in Federated Learning: A New Threat Landscape
Tuan Nguyen
Dung Thuy Nguyen
Khoa D. Doan
Kok-Seng Wong
AAML
31
1
0
05 Jul 2024
A Whole-Process Certifiably Robust Aggregation Method Against Backdoor Attacks in Federated Learning
Anqi Zhou
Yezheng Liu
Yidong Chai
Hongyi Zhu
Xinyue Ge
Yuanchun Jiang
Meng Wang
AAML
39
0
0
30 Jun 2024
Certified Robustness to Data Poisoning in Gradient-Based Training
Philip Sosnin
Mark N. Müller
Maximilian Baader
Calvin Tsay
Matthew Wicker
AAML
SILM
63
8
0
09 Jun 2024
Marking the Pace: A Blockchain-Enhanced Privacy-Traceable Strategy for Federated Recommender Systems
Zhen Cai
Tao Tang
Shuo Yu
Yunpeng Xiao
Feng Xia
40
1
0
07 Jun 2024
Federated Learning in Healthcare: Model Misconducts, Security, Challenges, Applications, and Future Research Directions -- A Systematic Review
Md. Shahin Ali
M. Ahsan
Lamia Tasnim
Sadia Afrin
Koushik Biswas
Maruf Md. Sajjad Hossain
Md Mahfuz Ahmed
Ronok Hashan
Md. Khairul Islam
Shivakumar Raman
30
5
0
22 May 2024
Model Poisoning Attacks to Federated Learning via Multi-Round Consistency
Yueqi Xie
Minghong Fang
Neil Zhenqiang Gong
AAML
26
7
0
24 Apr 2024
Fin-Fed-OD: Federated Outlier Detection on Financial Tabular Data
Dayananda Herurkar
Sebastián M. Palacio
Ahmed Anwar
J¨orn Hees
Andreas Dengel
FedML
20
3
0
23 Apr 2024
FLGuard: Byzantine-Robust Federated Learning via Ensemble of Contrastive Models
Younghan Lee
Yungi Cho
Woorim Han
Ho Bae
Y. Paek
FedML
AAML
27
2
0
05 Mar 2024
Decentralized Federated Learning: A Survey on Security and Privacy
Ehsan Hallaji
R. Razavi-Far
M. Saif
Boyu Wang
Qiang Yang
FedML
43
34
0
25 Jan 2024
Towards Efficient and Certified Recovery from Poisoning Attacks in Federated Learning
Yu Jiang
Jiyuan Shen
Ziyao Liu
Chee Wei Tan
Kwok-Yan Lam
AAML
FedML
32
6
0
16 Jan 2024
Data and Model Poisoning Backdoor Attacks on Wireless Federated Learning, and the Defense Mechanisms: A Comprehensive Survey
Yichen Wan
Youyang Qu
Wei Ni
Yong Xiang
Longxiang Gao
Ekram Hossain
AAML
45
33
0
14 Dec 2023
Defenses in Adversarial Machine Learning: A Survey
Baoyuan Wu
Shaokui Wei
Mingli Zhu
Meixi Zheng
Zihao Zhu
Mingda Zhang
Hongrui Chen
Danni Yuan
Li Liu
Qingshan Liu
AAML
30
14
0
13 Dec 2023
A Survey on Federated Unlearning: Challenges, Methods, and Future Directions
Ziyao Liu
Yu Jiang
Jiyuan Shen
Minyi Peng
Kwok-Yan Lam
Xingliang Yuan
Xiaoning Liu
MU
26
43
0
31 Oct 2023
FLrce: Resource-Efficient Federated Learning with Early-Stopping Strategy
Ziru Niu
Senior Member Ieee Hai Dong
•. A. K. Qin
Senior Member Ieee Tao Gu
25
4
0
15 Oct 2023
Resisting Backdoor Attacks in Federated Learning via Bidirectional Elections and Individual Perspective
Zhen Qin
Feiyi Chen
Chen Zhi
Xueqiang Yan
Shuiguang Deng
AAML
FedML
18
3
0
28 Sep 2023
SPIRT: A Fault-Tolerant and Reliable Peer-to-Peer Serverless ML Training Architecture
Amine Barrak
Mayssa Jaziri
Ranim Trabelsi
Fehmi Jaafar
Fábio Petrillo
31
2
0
25 Sep 2023
SPFL: A Self-purified Federated Learning Method Against Poisoning Attacks
Zizhen Liu
Weiyang He
Chip-Hong Chang
Jing Ye
Huawei Li
Xiaowei Li
29
4
0
19 Sep 2023
When Federated Learning meets Watermarking: A Comprehensive Overview of Techniques for Intellectual Property Protection
Mohammed Lansari
R. Bellafqira
K. Kapusta
V. Thouvenot
Olivier Bettan
G. Coatrieux
FedML
23
15
0
07 Aug 2023
Heterogeneous Federated Learning: State-of-the-art and Research Challenges
Mang Ye
Xiuwen Fang
Bo Du
PongChi Yuen
Dacheng Tao
FedML
AAML
29
244
0
20 Jul 2023
FedVal: Different good or different bad in federated learning
Viktor Valadi
Xinchi Qiu
Pedro Gusmão
Nicholas D. Lane
Mina Alibeigi
FedML
AAML
12
2
0
06 Jun 2023
Covert Communication Based on the Poisoning Attack in Federated Learning
Junchuan Liang
Rong Wang
FedML
18
1
0
02 Jun 2023
Trustworthy Federated Learning: A Survey
A. Tariq
M. Serhani
F. Sallabi
Tariq Qayyum
E. Barka
K. Shuaib
FedML
25
9
0
19 May 2023
FedGT: Identification of Malicious Clients in Federated Learning with Secure Aggregation
M. Xhemrishi
Johan Ostman
A. Wachter-Zeh
Alexandre Graell i Amat
FedML
17
6
0
09 May 2023
Multi-metrics adaptively identifies backdoors in Federated learning
Siquan Huang
Yijiang Li
Chong Chen
Leyu Shi
Ying Gao
AAML
30
19
0
12 Mar 2023
Backdoor Attacks and Defenses in Federated Learning: Survey, Challenges and Future Research Directions
Thuy-Dung Nguyen
Tuan Nguyen
Phi Le Nguyen
Hieu H. Pham
Khoa D. Doan
Kok-Seng Wong
AAML
FedML
32
56
0
03 Mar 2023
A Survey of Trustworthy Federated Learning with Perspectives on Security, Robustness, and Privacy
Yifei Zhang
Dun Zeng
Jinglong Luo
Zenglin Xu
Irwin King
FedML
69
47
0
21 Feb 2023
Backdoor Learning for NLP: Recent Advances, Challenges, and Future Research Directions
Marwan Omar
SILM
AAML
23
20
0
14 Feb 2023
BayBFed: Bayesian Backdoor Defense for Federated Learning
Kavita Kumari
Phillip Rieger
Hossein Fereidooni
Murtuza Jadliwala
A. Sadeghi
AAML
FedML
21
31
0
23 Jan 2023
Hijack Vertical Federated Learning Models As One Party
Pengyu Qiu
Xuhong Zhang
Shouling Ji
Changjiang Li
Yuwen Pu
Xing Yang
Ting Wang
FedML
8
4
0
01 Dec 2022
FedLesScan: Mitigating Stragglers in Serverless Federated Learning
M. Elzohairy
Mohak Chadha
Anshul Jindal
Andreas Grafberger
Jiatao Gu
Michael Gerndt
Osama Abboud
FedML
19
7
0
10 Nov 2022
FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated Learning
Kaiyuan Zhang
Guanhong Tao
Qiuling Xu
Shuyang Cheng
Shengwei An
...
Shiwei Feng
Guangyu Shen
Pin-Yu Chen
Shiqing Ma
Xiangyu Zhang
FedML
30
51
0
23 Oct 2022
FedRecover: Recovering from Poisoning Attacks in Federated Learning using Historical Information
Xiaoyu Cao
Jinyuan Jia
Zaixi Zhang
Neil Zhenqiang Gong
FedML
MU
AAML
11
72
0
20 Oct 2022
Long-Short History of Gradients is All You Need: Detecting Malicious and Unreliable Clients in Federated Learning
Ashish Gupta
Tie-Mei Luo
Mao V. Ngo
Sajal K. Das
AAML
FedML
29
13
0
14 Aug 2022
A New Implementation of Federated Learning for Privacy and Security Enhancement
Xiang Ma
Haijian Sun
R. Hu
Yi Qian
FedML
24
3
0
03 Aug 2022
Privacy-Preserving Federated Recurrent Neural Networks
Sinem Sav
Abdulrahman Diaa
Apostolos Pyrgelis
Jean-Philippe Bossuat
Jean-Pierre Hubaux
6
7
0
28 Jul 2022
Technical Report: Assisting Backdoor Federated Learning with Whole Population Knowledge Alignment
Tian Liu
Xueyang Hu
Tao Shu
AAML
FedML
14
6
0
25 Jul 2022
1
2
Next