ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.03501
  4. Cited By
Segmenting Unseen Industrial Components in a Heavy Clutter Using RGB-D
  Fusion and Synthetic Data

Segmenting Unseen Industrial Components in a Heavy Clutter Using RGB-D Fusion and Synthetic Data

10 February 2020
S. Back
Jongwon Kim
R. Kang
Seungjun Choi
Kyoobin Lee
ArXivPDFHTML

Papers citing "Segmenting Unseen Industrial Components in a Heavy Clutter Using RGB-D Fusion and Synthetic Data"

4 / 4 papers shown
Title
Bin-picking of novel objects through category-agnostic-segmentation: RGB
  matters
Bin-picking of novel objects through category-agnostic-segmentation: RGB matters
Prem Raj
S. Bhadang
Gaurav Chaudhary
Laxmidhar Behera
Tushar Sandhan
30
1
0
27 Dec 2023
Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion
  Modeling
Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling
S. Back
Joosoon Lee
Taewon Kim
Sangjun Noh
Raeyoung Kang
Seongho Bak
Kyoobin Lee
31
67
0
23 Sep 2021
Deep Learning based Food Instance Segmentation using Synthetic Data
Deep Learning based Food Instance Segmentation using Synthetic Data
Deokhwan Park
Joosoon Lee
Junseok Lee
Kyoobin Lee
SSeg
17
22
0
15 Jul 2021
Unknown Object Segmentation from Stereo Images
Unknown Object Segmentation from Stereo Images
M. Durner
W. Boerdijk
M. Sundermeyer
W. Friedl
Zoltán-Csaba Márton
Rudolph Triebel
26
34
0
11 Mar 2021
1