ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.04613
  4. Cited By
Neural network wave functions and the sign problem

Neural network wave functions and the sign problem

11 February 2020
A. Szabó
C. Castelnovo
ArXivPDFHTML

Papers citing "Neural network wave functions and the sign problem"

14 / 14 papers shown
Title
When can classical neural networks represent quantum states?
When can classical neural networks represent quantum states?
Tai-Hsuan Yang
Mehdi Soleimanifar
Thiago Bergamaschi
J. Preskill
36
3
0
30 Oct 2024
Approximately-symmetric neural networks for quantum spin liquids
Approximately-symmetric neural networks for quantum spin liquids
Dominik S. Kufel
Jack Kemp
Simon M. Linsel
C. Laumann
Norman Y. Yao
39
3
0
27 May 2024
Neural-network quantum state study of the long-range antiferromagnetic
  Ising chain
Neural-network quantum state study of the long-range antiferromagnetic Ising chain
Jicheol Kim
Dongkyu Kim
Dong-Hee Kim
64
1
0
18 Aug 2023
Variational optimization of the amplitude of neural-network quantum
  many-body ground states
Variational optimization of the amplitude of neural-network quantum many-body ground states
Jia-Qi Wang
Rong-Qiang He
Zhong-Yi Lu
21
5
0
18 Aug 2023
Learning ground states of gapped quantum Hamiltonians with Kernel
  Methods
Learning ground states of gapped quantum Hamiltonians with Kernel Methods
Clemens Giuliani
F. Vicentini
R. Rossi
Giuseppe Carleo
11
7
0
15 Mar 2023
Lattice Convolutional Networks for Learning Ground States of Quantum
  Many-Body Systems
Lattice Convolutional Networks for Learning Ground States of Quantum Many-Body Systems
Cong Fu
Xuan Zhang
Huixin Zhang
Hongyi Ling
Shenglong Xu
Shuiwang Ji
17
12
0
15 Jun 2022
$O(N^2)$ Universal Antisymmetry in Fermionic Neural Networks
O(N2)O(N^2)O(N2) Universal Antisymmetry in Fermionic Neural Networks
Tianyu Pang
Shuicheng Yan
Min-Bin Lin
21
3
0
26 May 2022
Deep learning of quantum entanglement from incomplete measurements
Deep learning of quantum entanglement from incomplete measurements
Dominik Koutný
L. Ginés
M. Moczała-Dusanowska
Sven Höfling
Christian Schneider
Ana Predojevic
M. Ježek
16
27
0
03 May 2022
NetKet 3: Machine Learning Toolbox for Many-Body Quantum Systems
NetKet 3: Machine Learning Toolbox for Many-Body Quantum Systems
F. Vicentini
Damian Hofmann
A. Szabó
Dian Wu
Christopher Roth
...
Gabriel Pescia
J. Nys
Vladimir Vargas-Calderón
N. Astrakhantsev
Giuseppe Carleo
13
87
0
20 Dec 2021
Speeding up Learning Quantum States through Group Equivariant
  Convolutional Quantum Ansätze
Speeding up Learning Quantum States through Group Equivariant Convolutional Quantum Ansätze
Han Zheng
Zimu Li
Junyu Liu
Sergii Strelchuk
Risi Kondor
53
54
0
14 Dec 2021
Learning ground states of quantum Hamiltonians with graph networks
Learning ground states of quantum Hamiltonians with graph networks
Dmitrii Kochkov
Tobias Pfaff
Alvaro Sanchez-Gonzalez
Peter W. Battaglia
B. Clark
44
26
0
12 Oct 2021
Neural Error Mitigation of Near-Term Quantum Simulations
Neural Error Mitigation of Near-Term Quantum Simulations
Elizabeth R. Bennewitz
Florian Hopfmueller
B. Kulchytskyy
Juan Carrasquilla
Pooya Ronagh
13
54
0
17 May 2021
Scaling of neural-network quantum states for time evolution
Scaling of neural-network quantum states for time evolution
Sheng-Hsuan Lin
F. Pollmann
21
25
0
21 Apr 2021
Probing Criticality in Quantum Spin Chains with Neural Networks
Probing Criticality in Quantum Spin Chains with Neural Networks
A. Berezutskii
M. Beketov
D. Yudin
Z. Zimborás
J Biamonte
AI4CE
6
9
0
05 May 2020
1