Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.04747
Cited By
On the Value of Target Data in Transfer Learning
12 February 2020
Steve Hanneke
Samory Kpotufe
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"On the Value of Target Data in Transfer Learning"
50 / 52 papers shown
Title
Provable Benefits of Unsupervised Pre-training and Transfer Learning via Single-Index Models
Taj Jones-McCormick
Aukosh Jagannath
S. Sen
119
0
0
24 Feb 2025
Learning Neural Networks with Distribution Shift: Efficiently Certifiable Guarantees
Gautam Chandrasekaran
Adam R. Klivans
Lin Lin Lee
Konstantinos Stavropoulos
OOD
71
1
0
22 Feb 2025
On The Statistical Complexity of Offline Decision-Making
Thanh Nguyen-Tang
R. Arora
OffRL
222
1
0
10 Jan 2025
Trans-Glasso: A Transfer Learning Approach to Precision Matrix Estimation
Boxin Zhao
Cong Ma
Mladen Kolar
100
1
0
23 Nov 2024
Transformation-Invariant Learning and Theoretical Guarantees for OOD Generalization
Omar Montasser
Han Shao
Emmanuel Abbe
OOD
58
2
0
30 Oct 2024
Learning with Shared Representations: Statistical Rates and Efficient Algorithms
Xiaochun Niu
Lili Su
Jiaming Xu
Pengkun Yang
FedML
68
2
0
07 Sep 2024
Learning Tree-Structured Composition of Data Augmentation
Dongyue Li
Kailai Chen
P. Radivojac
Hongyang R. Zhang
120
1
0
26 Aug 2024
Transfer Learning for Latent Variable Network Models
Akhil Jalan
Arya Mazumdar
Soumendu Sundar Mukherjee
Purnamrita Sarkar
123
1
0
05 Jun 2024
Beyond Discrepancy: A Closer Look at the Theory of Distribution Shift
Robi Bhattacharjee
Nick Rittler
Kamalika Chaudhuri
87
1
0
29 May 2024
An adaptive transfer learning perspective on classification in non-stationary environments
Henry W J Reeve
86
0
0
28 May 2024
Understanding Forgetting in Continual Learning with Linear Regression
Meng Ding
Kaiyi Ji
Di Wang
Jinhui Xu
CLL
145
10
0
27 May 2024
Understanding Server-Assisted Federated Learning in the Presence of Incomplete Client Participation
Haibo Yang
Pei-Yuan Qiu
Prashant Khanduri
Minghong Fang
Jia Liu
FedML
98
2
0
04 May 2024
Transfer Learning Study of Motion Transformer-based Trajectory Predictions
Lars Ullrich
Alex McMaster
Knut Graichen
80
4
0
12 Apr 2024
Transfer Learning Beyond Bounded Density Ratios
Alkis Kalavasis
Ilias Zadik
Manolis Zampetakis
94
5
0
18 Mar 2024
Model-free Test Time Adaptation for Out-Of-Distribution Detection
Yi-Fan Zhang
Xue Wang
Tian Zhou
Kun Yuan
Zhang Zhang
Liang Wang
Rong Jin
Tien-Ping Tan
TTA
OODD
80
4
0
28 Nov 2023
Towards the Theory of Unsupervised Federated Learning: Non-asymptotic Analysis of Federated EM Algorithms
Ye Tian
Haolei Weng
Yang Feng
74
4
0
23 Oct 2023
Tight Rates in Supervised Outlier Transfer Learning
Mohammadreza M. Kalan
Samory Kpotufe
38
1
0
07 Oct 2023
Differentially Private Domain Adaptation with Theoretical Guarantees
Raef Bassily
Corinna Cortes
Anqi Mao
M. Mohri
60
0
0
15 Jun 2023
Best-Effort Adaptation
Pranjal Awasthi
Corinna Cortes
M. Mohri
91
8
0
10 May 2023
Classification Tree Pruning Under Covariate Shift
Nicholas Galbraith
Samory Kpotufe
81
1
0
07 May 2023
Limits of Model Selection under Transfer Learning
Steve Hanneke
Samory Kpotufe
Yasaman Mahdaviyeh
116
6
0
29 Apr 2023
AdaNPC: Exploring Non-Parametric Classifier for Test-Time Adaptation
Yi-Fan Zhang
Xue Wang
Kexin Jin
Kun Yuan
Zhang Zhang
Liang Wang
Rong Jin
Tien-Ping Tan
TTA
OOD
93
44
0
25 Apr 2023
Reliable learning in challenging environments
Maria-Florina Balcan
Steve Hanneke
Rattana Pukdee
Dravyansh Sharma
OOD
80
6
0
06 Apr 2023
Identification of Negative Transfers in Multitask Learning Using Surrogate Models
Dongyue Li
Huy Le Nguyen
Hongyang R. Zhang
83
13
0
25 Mar 2023
Pseudo-Labeling for Kernel Ridge Regression under Covariate Shift
Kaizheng Wang
66
12
0
20 Feb 2023
Transformers as Algorithms: Generalization and Stability in In-context Learning
Yingcong Li
M. E. Ildiz
Dimitris Papailiopoulos
Samet Oymak
112
174
0
17 Jan 2023
Transfer Learning for Contextual Multi-armed Bandits
Changxiao Cai
T. Tony Cai
Hongzhe Li
127
19
0
22 Nov 2022
The Value of Out-of-Distribution Data
Ashwin De Silva
Rahul Ramesh
Carey E. Priebe
Pratik Chaudhari
Joshua T. Vogelstein
OODD
91
12
0
23 Aug 2022
The Power and Limitation of Pretraining-Finetuning for Linear Regression under Covariate Shift
Jingfeng Wu
Difan Zou
Vladimir Braverman
Quanquan Gu
Sham Kakade
65
17
0
03 Aug 2022
Robust Fine-Tuning of Deep Neural Networks with Hessian-based Generalization Guarantees
Haotian Ju
Dongyue Li
Hongyang R. Zhang
126
30
0
06 Jun 2022
Dimensionless machine learning: Imposing exact units equivariance
Soledad Villar
Weichi Yao
D. Hogg
Ben Blum-Smith
Bianca Dumitrascu
58
27
0
02 Apr 2022
Connecting sufficient conditions for domain adaptation: source-guided uncertainty, relaxed divergences and discrepancy localization
Sofien Dhouib
S. Maghsudi
83
2
0
09 Mar 2022
Transfer-Learning Across Datasets with Different Input Dimensions: An Algorithm and Analysis for the Linear Regression Case
Luis P. Silvestrin
Harry Van Zanten
Mark Hoogendoorn
G. Koole
141
4
0
10 Feb 2022
Universal and data-adaptive algorithms for model selection in linear contextual bandits
Vidya Muthukumar
A. Krishnamurthy
71
5
0
08 Nov 2021
Characterizing and Understanding the Generalization Error of Transfer Learning with Gibbs Algorithm
Yuheng Bu
Gholamali Aminian
Laura Toni
Miguel R. D. Rodrigues
G. Wornell
59
14
0
02 Nov 2021
Direct domain adaptation through reciprocal linear transformations
T. Alkhalifah
O. Ovcharenko
OOD
131
5
0
17 Aug 2021
Learning to Transfer: A Foliated Theory
Janith C. Petangoda
M. Deisenroth
N. Monk
50
0
0
22 Jul 2021
Near-Optimal Linear Regression under Distribution Shift
Qi Lei
Wei Hu
Jason D. Lee
OOD
75
42
0
23 Jun 2021
Adaptive transfer learning
Henry W. J. Reeve
T. Cannings
R. Samworth
OOD
35
12
0
08 Jun 2021
Model Zoo: A Growing "Brain" That Learns Continually
Rahul Ramesh
Pratik Chaudhari
CLL
FedML
111
66
0
06 Jun 2021
Transfer Learning under High-dimensional Generalized Linear Models
Ye Tian
Yang Feng
93
126
0
29 May 2021
Weighted Training for Cross-Task Learning
Shuxiao Chen
K. Crammer
Han He
Dan Roth
Weijie J. Su
83
28
0
28 May 2021
How Fine-Tuning Allows for Effective Meta-Learning
Kurtland Chua
Qi Lei
Jason D. Lee
95
50
0
05 May 2021
A Computationally Efficient Classification Algorithm in Posterior Drift Model: Phase Transition and Minimax Adaptivity
Ruiqi Liu
Kexuan Li
Zuofeng Shang
30
4
0
09 Nov 2020
Theoretical bounds on estimation error for meta-learning
James Lucas
Mengye Ren
Irene Kameni
T. Pitassi
R. Zemel
51
12
0
14 Oct 2020
Learning Invariant Representations and Risks for Semi-supervised Domain Adaptation
Yue Liu
Yezhen Wang
Shanghang Zhang
Dongsheng Li
Trevor Darrell
Kurt Keutzer
Han Zhao
OOD
83
96
0
09 Oct 2020
Trustworthy Convolutional Neural Networks: A Gradient Penalized-based Approach
Nicholas F Halliwell
Freddy Lecue
FAtt
118
9
0
29 Sep 2020
On Localized Discrepancy for Domain Adaptation
Yuchen Zhang
Mingsheng Long
Jianmin Wang
Michael I. Jordan
73
18
0
14 Aug 2020
Beyond
H
\mathcal{H}
H
-Divergence: Domain Adaptation Theory With Jensen-Shannon Divergence
Changjian Shui
Qi Chen
Jun Wen
Fan Zhou
Christian Gagné
Boyu Wang
97
23
0
30 Jul 2020
A No-Free-Lunch Theorem for MultiTask Learning
Steve Hanneke
Samory Kpotufe
167
39
0
29 Jun 2020
1
2
Next