ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.05981
  4. Cited By
A Hybrid 3DCNN and 3DC-LSTM based model for 4D Spatio-temporal fMRI
  data: An ABIDE Autism Classification study

A Hybrid 3DCNN and 3DC-LSTM based model for 4D Spatio-temporal fMRI data: An ABIDE Autism Classification study

14 February 2020
A. E. Gazzar
Mirjam Quaak
L. Cerliani
Peter Bloem
G. Wingen
R. Thomas
ArXivPDFHTML

Papers citing "A Hybrid 3DCNN and 3DC-LSTM based model for 4D Spatio-temporal fMRI data: An ABIDE Autism Classification study"

3 / 3 papers shown
Title
fMRI-S4: learning short- and long-range dynamic fMRI dependencies using
  1D Convolutions and State Space Models
fMRI-S4: learning short- and long-range dynamic fMRI dependencies using 1D Convolutions and State Space Models
A. E. Gazzar
R. Thomas
G. Wingen
14
3
0
08 Aug 2022
Deep Learning for Neuroimaging-based Diagnosis and Rehabilitation of
  Autism Spectrum Disorder: A Review
Deep Learning for Neuroimaging-based Diagnosis and Rehabilitation of Autism Spectrum Disorder: A Review
Marjane Khodatars
A. Shoeibi
Delaram Sadeghi
Navid Ghaasemi
M. Jafari
...
Abbas Khosravi
S. Nahavandi
Sadiq Hussain
U. Acharya
M. Berk
28
202
0
02 Jul 2020
Convolutional LSTM Network: A Machine Learning Approach for
  Precipitation Nowcasting
Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting
Xingjian Shi
Zhourong Chen
Hao Wang
Dit-Yan Yeung
W. Wong
W. Woo
233
7,904
0
13 Jun 2015
1