ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.07281
27
3
v1v2v3v4v5 (latest)

Deep Attention Spatio-Temporal Point Processes

17 February 2020
Shixiang Zhu
Minghe Zhang
Ruyi Ding
Yao Xie
    3DPC
ArXiv (abs)PDFHTML
Abstract

We present a novel attention-based sequential model for mutually dependent spatio-temporal discrete event data, which is a versatile framework for capturing the non-homogeneous influence of events. We go beyond the assumption that the influence of the historical event (causing an upper-ward or downward jump in the intensity function) will fade monotonically over time, which is a key assumption made by many widely-used point process models, including those based on Recurrent Neural Networks (RNNs). We borrow the idea from the attention model based on a probabilistic score function, which leads to a flexible representation of the intensity function and is highly interpretable. We demonstrate the superior performance of our approach compared to the state-of-the-art for both synthetic and real data.

View on arXiv
Comments on this paper