ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.07408
  4. Cited By
MoTiAC: Multi-Objective Actor-Critics for Real-Time Bidding
v1v2 (latest)

MoTiAC: Multi-Objective Actor-Critics for Real-Time Bidding

18 February 2020
Haolin Zhou
Chaoqi Yang
Xiaofeng Gao
Qiong Chen
Gongshen Liu
Guihai Chen
ArXiv (abs)PDFHTML

Papers citing "MoTiAC: Multi-Objective Actor-Critics for Real-Time Bidding"

3 / 3 papers shown
Title
RL-MPCA: A Reinforcement Learning Based Multi-Phase Computation
  Allocation Approach for Recommender Systems
RL-MPCA: A Reinforcement Learning Based Multi-Phase Computation Allocation Approach for Recommender Systems
Jiahong Zhou
Shunhui Mao
Guoliang Yang
Bo Tang
Qianlong Xie
Lebin Lin
Xingxing Wang
Dong Wang
62
8
0
27 Dec 2023
Offline Reinforcement Learning for Optimizing Production Bidding
  Policies
Offline Reinforcement Learning for Optimizing Production Bidding Policies
D. Korenkevych
Frank Cheng
Artsiom Balakir
Alex Nikulkov
Lingnan Gao
Zhihao Cen
Zuobing Xu
Zheqing Zhu
OffRL
68
1
0
13 Oct 2023
Real-time Bidding Strategy in Display Advertising: An Empirical Analysis
Real-time Bidding Strategy in Display Advertising: An Empirical Analysis
Mengjuan Liu
Zhengning Hu
Zhi Lai
Daiwei Zheng
Xuyun Nie
31
2
0
30 Nov 2022
1