Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.07613
Cited By
An interpretable classifier for high-resolution breast cancer screening images utilizing weakly supervised localization
13 February 2020
Yiqiu Shen
Nan Wu
Jason Phang
Jungkyu Park
Kangning Liu
Sudarshini Tyagi
Laura Heacock
S. G. Kim
Linda Moy
Kyunghyun Cho
Krzysztof J. Geras
Re-assign community
ArXiv
PDF
HTML
Papers citing
"An interpretable classifier for high-resolution breast cancer screening images utilizing weakly supervised localization"
44 / 44 papers shown
Title
Enhancing breast cancer detection on screening mammogram using self-supervised learning and a hybrid deep model of Swin Transformer and Convolutional Neural Network
Han Chen
Anne L. Martel
43
0
0
28 Apr 2025
A Multi-Modal AI System for Screening Mammography: Integrating 2D and 3D Imaging to Improve Breast Cancer Detection in a Prospective Clinical Study
Jungkyu Park
Jan Witowski
Yanqi Xu
Hari M. Trivedi
J. Gichoya
...
Malte Westerhoff
Linda Moy
Laura Heacock
Alana A. Lewin
Krzysztof J. Geras
28
0
0
08 Apr 2025
Flip Learning: Weakly Supervised Erase to Segment Nodules in Breast Ultrasound
Yuhao Huang
Ao Chang
Haoran Dou
X. Tao
Xinrui Zhou
...
Ruobing Huang
Alejandro F Frangi
Lingyun Bao
Xin Yang
Dong Ni
79
1
0
26 Mar 2025
Mammo-Clustering: A Multi-views Tri-level Information Fusion Context Clustering Framework for Localization and Classification in Mammography
Shilong Yang
Chulong Zhang
Qi Zang
Juan Yu
Liang Zeng
...
Yexuan Xing
Xin Pan
Qi Li
Xiaokun Liang
Yaoqin Xie
40
0
0
23 Sep 2024
Investigating the Impact of Randomness on Reproducibility in Computer Vision: A Study on Applications in Civil Engineering and Medicine
Bahadır Eryılmaz
Osman Alperen Koras
Jorg Schlotterer
Christin Seifert
21
0
0
19 Sep 2024
Prototype-based Interpretable Breast Cancer Prediction Models: Analysis and Challenges
Shreyasi Pathak
Jorg Schlotterer
Jeroen Veltman
J. Geerdink
M. V. Keulen
Christin Seifert
26
3
0
29 Mar 2024
Weakly supervised localisation of prostate cancer using reinforcement learning for bi-parametric MR images
Martynas Pocius
Wen Yan
D. Barratt
M. Emberton
Matthew J. Clarkson
Yipeng Hu
Shaheer U. Saeed
32
0
0
21 Feb 2024
Quantifying Impairment and Disease Severity Using AI Models Trained on Healthy Subjects
Boyang Yu
Aakash Kaku
Kangning Liu
A. Parnandi
Emily E Fokas
Anita Venkatesan
Natasha Pandit
Rajesh Ranganath
Heidi M. Schambra
C. Fernandez‐Granda
19
0
0
21 Nov 2023
Leveraging Transformers to Improve Breast Cancer Classification and Risk Assessment with Multi-modal and Longitudinal Data
Yiqiu Shen
Jungkyu Park
Frank Yeung
Eliana Goldberg
Laura Heacock
Farah E. Shamout
Krzysztof J. Geras
13
2
0
06 Nov 2023
Robust and Interpretable Medical Image Classifiers via Concept Bottleneck Models
An Yan
Yu-Xiang Wang
Yiwu Zhong
Zexue He
Petros Karypis
...
Chengyu Dong
Amilcare Gentili
Chun-Nan Hsu
Jingbo Shang
Julian McAuley
27
30
0
04 Oct 2023
Unsupervised discovery of Interpretable Visual Concepts
Caroline Mazini Rodrigues
Nicolas Boutry
Laurent Najman
FAtt
16
2
0
31 Aug 2023
Post-Hoc Explainability of BI-RADS Descriptors in a Multi-task Framework for Breast Cancer Detection and Segmentation
Mohammad Karimzadeh
Aleksandar Vakanski
Min Xian
Boyu Zhang
13
5
0
27 Aug 2023
M&M: Tackling False Positives in Mammography with a Multi-view and Multi-instance Learning Sparse Detector
Yen Nhi Truong Vu
Dan Guo
Ahmed Taha
Jason Su
Thomas P. Matthews
17
3
0
11 Aug 2023
Improving Mass Detection in Mammography Images: A Study of Weakly Supervised Learning and Class Activation Map Methods
Vicente Sampaio
F. Cordeiro
14
3
0
07 Aug 2023
MammoDG: Generalisable Deep Learning Breaks the Limits of Cross-Domain Multi-Center Breast Cancer Screening
Yijun Yang
Shujun Wang
Lihao Liu
S. Hickman
F. Gilbert
Carola-Bibiane Schönlieb
Angelica I. Aviles-Rivero
14
5
0
02 Aug 2023
MedLSAM: Localize and Segment Anything Model for 3D CT Images
Wenhui Lei
Xu Wei
Xiaofan Zhang
Kang Li
Shaoting Zhang
MedIm
18
3
0
26 Jun 2023
DiffMIC: Dual-Guidance Diffusion Network for Medical Image Classification
Yijun Yang
H. Fu
Angelica I. Aviles-Rivero
Carola-Bibiane Schönlieb
Lei Zhu
MedIm
83
48
0
19 Mar 2023
BRAIxDet: Learning to Detect Malignant Breast Lesion with Incomplete Annotations
Yuanhong Chen
Yuyuan Liu
Chong Wang
M. Elliott
C. Kwok
...
Yu Tian
Fengbei Liu
Helen Frazer
Davis J. McCarthy
Gustavo Carneiro
18
1
0
31 Jan 2023
Receptive Field Refinement for Convolutional Neural Networks Reliably Improves Predictive Performance
Mats L. Richter
C. Pal
9
3
0
26 Nov 2022
Computer-Aided Cancer Diagnosis via Machine Learning and Deep Learning: A comparative review
Solene Bechelli
11
2
0
19 Oct 2022
Multiple Instance Learning via Iterative Self-Paced Supervised Contrastive Learning
Kangning Liu
Weicheng Zhu
Yiqiu Shen
Sheng Liu
N. Razavian
Krzysztof J. Geras
C. Fernandez‐Granda
SSL
28
24
0
17 Oct 2022
An efficient deep neural network to find small objects in large 3D images
Jungkyu Park
Jakub Chlkedowski
Stanislaw Jastrzebski
Jan Witowski
Yan Xu
...
Melanie Wegener
Linda Moy
Laura Heacock
B. Reig
Krzysztof J. Geras
MedIm
11
1
0
16 Oct 2022
Knowledge Distillation to Ensemble Global and Interpretable Prototype-Based Mammogram Classification Models
Chong Wang
Yuanhong Chen
Yuyuan Liu
Yu Tian
Fengbei Liu
Davis J. McCarthy
M. Elliott
Helen Frazer
G. Carneiro
41
19
0
26 Sep 2022
Multi-view Local Co-occurrence and Global Consistency Learning Improve Mammogram Classification Generalisation
Yuanhong Chen
Hu Wang
Chong Wang
Yu Tian
Fengbei Liu
M. Elliott
Davis J. McCarthy
Helen Frazer
G. Carneiro
45
19
0
21 Sep 2022
Deep is a Luxury We Don't Have
Ahmed Taha
Yen Nhi Truong Vu
Brent Mombourquette
Thomas P. Matthews
Jason Su
Sadanand Singh
ViT
MedIm
18
2
0
11 Aug 2022
Independent evaluation of state-of-the-art deep networks for mammography
O. M. Velarde
Lucas Parrra
OOD
23
0
0
22 Jun 2022
Mammograms Classification: A Review
Marawan Elbatel
15
1
0
04 Mar 2022
Multi-task fusion for improving mammography screening data classification
M. Wimmer
Gert Sluiter
David Major
Dimitrios Lenis
Astrid Berg
Theresa Neubauer
Katja Bühler
13
8
0
01 Dec 2021
AI-Based Detection, Classification and Prediction/Prognosis in Medical Imaging: Towards Radiophenomics
F. Yousefirizi
P. Decazes
Amine Amyar
S. Ruan
Babak Saboury
Arman Rahmim
LM&MA
MedIm
26
43
0
20 Oct 2021
Recurrent Attention Models with Object-centric Capsule Representation for Multi-object Recognition
Hossein Adeli
Seoyoung Ahn
G. Zelinsky
OCL
23
3
0
11 Oct 2021
BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer Diagnosis in Breast Ultrasound Images
Boyu Zhang
Aleksandar Vakanski
Min Xian
14
11
0
05 Oct 2021
Meta-repository of screening mammography classifiers
Benjamin Stadnick
Jan Witowski
Vishwaesh Rajiv
Jakub Chledowski
Farah E. Shamout
Kyunghyun Cho
Krzysztof J. Geras
14
11
0
10 Aug 2021
Weakly-supervised High-resolution Segmentation of Mammography Images for Breast Cancer Diagnosis
Kangning Liu
Yiqiu Shen
Nan Wu
Jakub Chledowski
C. Fernandez‐Granda
Krzysztof J. Geras
17
23
0
13 Jun 2021
Hard-Attention for Scalable Image Classification
Athanasios Papadopoulos
Pawel Korus
N. Memon
60
25
0
20 Feb 2021
Vessel-CAPTCHA: an efficient learning framework for vessel annotation and segmentation
Vien Ngoc Dang
Francesco Galati
Rosa Cortese
G. Giacomo
Viola Marconeto
Pratek Mathur
Karim Lekadir
Marco Lorenzi
F. Prados
Maria A. Zuluaga
MedIm
17
35
0
22 Jan 2021
Beyond Fine-tuning: Classifying High Resolution Mammograms using Function-Preserving Transformations
Tao Wei
Angelica I Aviles-Rivero
Shuo Wang
Yuan Huang
F. Gilbert
Carola-Bibiane Schönlieb
C. L. P. Chen
MedIm
11
14
0
20 Jan 2021
COVID-19 Prognosis via Self-Supervised Representation Learning and Multi-Image Prediction
Anuroop Sriram
Matthew Muckley
Koustuv Sinha
Farah E. Shamout
Joelle Pineau
Krzysztof J. Geras
Lea Azour
Y. Aphinyanaphongs
N. Yakubova
W. Moore
MedIm
126
64
0
13 Jan 2021
Differences between human and machine perception in medical diagnosis
Taro Makino
Stanislaw Jastrzebski
Witold Oleszkiewicz
Celin Chacko
Robin Ehrenpreis
...
D. Sodickson
Laura Heacock
Linda Moy
Kyunghyun Cho
Krzysztof J. Geras
AAML
8
26
0
28 Nov 2020
Reducing false-positive biopsies with deep neural networks that utilize local and global information in screening mammograms
Nan Wu
Zhe Huang
Yiqiu Shen
Jungkyu Park
Jason Phang
...
S. G. Kim
Kyunghyun Cho
Laura Heacock
Linda Moy
Krzysztof J. Geras
11
6
0
19 Sep 2020
An artificial intelligence system for predicting the deterioration of COVID-19 patients in the emergency department
Farah E. Shamout
Yiqiu Shen
Nan Wu
Aakash Kaku
Jungkyu Park
...
W. Moore
Yvonne W. Lui
Yindalon Aphinyanagphongs
C. Fernandez‐Granda
Krzysztof J. Geras
9
0
0
04 Aug 2020
Understanding the robustness of deep neural network classifiers for breast cancer screening
Witold Oleszkiewicz
Taro Makino
Stanislaw Jastrzebski
Tomasz Trzciñski
Linda Moy
Kyunghyun Cho
Laura Heacock
Krzysztof J. Geras
11
0
0
23 Mar 2020
Learning from Suspected Target: Bootstrapping Performance for Breast Cancer Detection in Mammography
Li Xiao
Cheng Zhu
Junjun Liu
Chunlong Luo
Peifang Liu
Yi Zhao
6
5
0
01 Mar 2020
Energy Models for Better Pseudo-Labels: Improving Semi-Supervised Classification with the 1-Laplacian Graph Energy
Angelica I. Aviles-Rivero
Nicolas Papadakis
Ruoteng Li
P. Sellars
Samar M. Alsaleh
R. Tan
Carola-Bibiane Schönlieb
14
3
0
20 Jun 2019
Effective Approaches to Attention-based Neural Machine Translation
Thang Luong
Hieu H. Pham
Christopher D. Manning
214
7,923
0
17 Aug 2015
1