ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.07684
  4. Cited By
A Lagrangian Approach to Information Propagation in Graph Neural
  Networks

A Lagrangian Approach to Information Propagation in Graph Neural Networks

18 February 2020
Matteo Tiezzi
G. Marra
S. Melacci
Marco Maggini
Marco Gori
    GNN
ArXivPDFHTML

Papers citing "A Lagrangian Approach to Information Propagation in Graph Neural Networks"

4 / 4 papers shown
Title
Forward Learning of Graph Neural Networks
Forward Learning of Graph Neural Networks
Namyong Park
Xing Wang
Antoine Simoulin
Shuai Yang
Grey Yang
Ryan Rossi
Puja Trivedi
Nesreen K. Ahmed
GNN
47
1
0
16 Mar 2024
High Performance of Gradient Boosting in Binding Affinity Prediction
High Performance of Gradient Boosting in Binding Affinity Prediction
Dmitrii Gavrilev
Nurlybek Amangeldiuly
Sergei Ivanov
Evgeny Burnaev
AI4CE
35
2
0
14 May 2022
Graph Neural Networks for Graph Drawing
Graph Neural Networks for Graph Drawing
Matteo Tiezzi
Gabriele Ciravegna
Marco Gori
26
20
0
21 Sep 2021
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
264
3,243
0
24 Nov 2016
1