Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.07839
Cited By
Is Local SGD Better than Minibatch SGD?
18 February 2020
Blake E. Woodworth
Kumar Kshitij Patel
Sebastian U. Stich
Zhen Dai
Brian Bullins
H. B. McMahan
Ohad Shamir
Nathan Srebro
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Is Local SGD Better than Minibatch SGD?"
31 / 31 papers shown
Title
A New Theoretical Perspective on Data Heterogeneity in Federated Optimization
Jiayi Wang
Shiqiang Wang
Rong-Rong Chen
Mingyue Ji
FedML
16
1
0
22 Jul 2024
Distributed Stochastic Gradient Descent with Staleness: A Stochastic Delay Differential Equation Based Framework
Siyuan Yu
Wei Chen
H. V. Poor
22
0
0
17 Jun 2024
The Limits and Potentials of Local SGD for Distributed Heterogeneous Learning with Intermittent Communication
Kumar Kshitij Patel
Margalit Glasgow
Ali Zindari
Lingxiao Wang
Sebastian U. Stich
Ziheng Cheng
Nirmit Joshi
Nathan Srebro
39
6
0
19 May 2024
Efficient Federated Learning via Local Adaptive Amended Optimizer with Linear Speedup
Yan Sun
Li Shen
Hao Sun
Liang Ding
Dacheng Tao
FedML
19
16
0
30 Jul 2023
Dynamic Regularized Sharpness Aware Minimization in Federated Learning: Approaching Global Consistency and Smooth Landscape
Yan Sun
Li Shen
Shi-Yong Chen
Liang Ding
Dacheng Tao
FedML
19
33
0
19 May 2023
Faster Federated Learning with Decaying Number of Local SGD Steps
Jed Mills
Jia Hu
Geyong Min
FedML
20
7
0
16 May 2023
Federated TD Learning over Finite-Rate Erasure Channels: Linear Speedup under Markovian Sampling
Nicolò Dal Fabbro
A. Mitra
George J. Pappas
FedML
22
12
0
14 May 2023
SLowcal-SGD: Slow Query Points Improve Local-SGD for Stochastic Convex Optimization
Kfir Y. Levy
Kfir Y. Levy
FedML
32
2
0
09 Apr 2023
Similarity, Compression and Local Steps: Three Pillars of Efficient Communications for Distributed Variational Inequalities
Aleksandr Beznosikov
Martin Takáč
Alexander Gasnikov
21
10
0
15 Feb 2023
Delay Sensitive Hierarchical Federated Learning with Stochastic Local Updates
Abdulmoneam Ali
A. Arafa
FedML
25
3
0
09 Feb 2023
Learning to Generate Image Embeddings with User-level Differential Privacy
Zheng Xu
Maxwell D. Collins
Yuxiao Wang
Liviu Panait
Sewoong Oh
S. Augenstein
Ting Liu
Florian Schroff
H. B. McMahan
FedML
20
29
0
20 Nov 2022
Label driven Knowledge Distillation for Federated Learning with non-IID Data
Minh-Duong Nguyen
Viet Quoc Pham
D. Hoang
Long Tran-Thanh
Diep N. Nguyen
W. Hwang
13
2
0
29 Sep 2022
On the Stability Analysis of Open Federated Learning Systems
Youbang Sun
H. Fernando
Tianyi Chen
Shahin Shahrampour
FedML
13
1
0
25 Sep 2022
FedAvg with Fine Tuning: Local Updates Lead to Representation Learning
Liam Collins
Hamed Hassani
Aryan Mokhtari
Sanjay Shakkottai
FedML
19
74
0
27 May 2022
Local Stochastic Factored Gradient Descent for Distributed Quantum State Tomography
J. Kim
Taha Toghani
César A. Uribe
Anastasios Kyrillidis
17
3
0
22 Mar 2022
Personalization Improves Privacy-Accuracy Tradeoffs in Federated Learning
A. Bietti
Chen-Yu Wei
Miroslav Dudík
John Langford
Zhiwei Steven Wu
FedML
14
43
0
10 Feb 2022
Towards Federated Learning on Time-Evolving Heterogeneous Data
Yongxin Guo
Tao R. Lin
Xiaoying Tang
FedML
6
30
0
25 Dec 2021
Federated Expectation Maximization with heterogeneity mitigation and variance reduction
Aymeric Dieuleveut
G. Fort
Eric Moulines
Geneviève Robin
FedML
23
5
0
03 Nov 2021
A Stochastic Newton Algorithm for Distributed Convex Optimization
Brian Bullins
Kumar Kshitij Patel
Ohad Shamir
Nathan Srebro
Blake E. Woodworth
16
15
0
07 Oct 2021
Personalized Federated Learning for Heterogeneous Clients with Clustered Knowledge Transfer
Yae Jee Cho
Jianyu Wang
Tarun Chiruvolu
Gauri Joshi
FedML
6
29
0
16 Sep 2021
Accelerating Federated Learning with a Global Biased Optimiser
Jed Mills
Jia Hu
Geyong Min
Rui Jin
Siwei Zheng
Jin Wang
FedML
AI4CE
25
9
0
20 Aug 2021
FedChain: Chained Algorithms for Near-Optimal Communication Cost in Federated Learning
Charlie Hou
K. K. Thekumparampil
Giulia Fanti
Sewoong Oh
FedML
19
14
0
16 Aug 2021
Implicit Gradient Alignment in Distributed and Federated Learning
Yatin Dandi
Luis Barba
Martin Jaggi
FedML
11
31
0
25 Jun 2021
Convergence and Accuracy Trade-Offs in Federated Learning and Meta-Learning
Zachary B. Charles
Jakub Konecný
FedML
14
61
0
08 Mar 2021
Linear Convergence in Federated Learning: Tackling Client Heterogeneity and Sparse Gradients
A. Mitra
Rayana H. Jaafar
George J. Pappas
Hamed Hassani
FedML
55
157
0
14 Feb 2021
Communication-Efficient and Distributed Learning Over Wireless Networks: Principles and Applications
Jihong Park
S. Samarakoon
Anis Elgabli
Joongheon Kim
M. Bennis
Seong-Lyun Kim
Mérouane Debbah
6
159
0
06 Aug 2020
Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization
Jianyu Wang
Qinghua Liu
Hao Liang
Gauri Joshi
H. Vincent Poor
MoMe
FedML
14
1,293
0
15 Jul 2020
Minibatch vs Local SGD for Heterogeneous Distributed Learning
Blake E. Woodworth
Kumar Kshitij Patel
Nathan Srebro
FedML
13
198
0
08 Jun 2020
FedSplit: An algorithmic framework for fast federated optimization
Reese Pathak
Martin J. Wainwright
FedML
19
181
0
11 May 2020
A Unified Theory of Decentralized SGD with Changing Topology and Local Updates
Anastasia Koloskova
Nicolas Loizou
Sadra Boreiri
Martin Jaggi
Sebastian U. Stich
FedML
27
489
0
23 Mar 2020
Optimal Distributed Online Prediction using Mini-Batches
O. Dekel
Ran Gilad-Bachrach
Ohad Shamir
Lin Xiao
166
683
0
07 Dec 2010
1