ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.08860
  4. Cited By
Dissipative SymODEN: Encoding Hamiltonian Dynamics with Dissipation and
  Control into Deep Learning

Dissipative SymODEN: Encoding Hamiltonian Dynamics with Dissipation and Control into Deep Learning

20 February 2020
Yaofeng Desmond Zhong
Biswadip Dey
Amit Chakraborty
    PINN
    AI4CE
ArXivPDFHTML

Papers citing "Dissipative SymODEN: Encoding Hamiltonian Dynamics with Dissipation and Control into Deep Learning"

25 / 25 papers shown
Title
MetaSym: A Symplectic Meta-learning Framework for Physical Intelligence
MetaSym: A Symplectic Meta-learning Framework for Physical Intelligence
Pranav Vaidhyanathan
Aristotelis Papatheodorou
Mark T. Mitchison
Natalia Ares
Ioannis Havoutis
PINN
AI4CE
38
1
0
23 Feb 2025
Neural Port-Hamiltonian Differential Algebraic Equations for Compositional Learning of Electrical Networks
Neural Port-Hamiltonian Differential Algebraic Equations for Compositional Learning of Electrical Networks
Cyrus Neary
Nathan Tsao
Ufuk Topcu
74
1
0
15 Dec 2024
Port-Hamiltonian Neural ODE Networks on Lie Groups For Robot Dynamics
  Learning and Control
Port-Hamiltonian Neural ODE Networks on Lie Groups For Robot Dynamics Learning and Control
T. Duong
Abdullah Altawaitan
Jason Stanley
Nikolay A. Atanasov
28
10
0
17 Jan 2024
Learning Dissipative Neural Dynamical Systems
Learning Dissipative Neural Dynamical Systems
Yuezhu Xu
S. Sivaranjani
23
2
0
27 Sep 2023
Hamiltonian GAN
Hamiltonian GAN
Christine Allen-Blanchette
GAN
AI4CE
27
1
0
22 Aug 2023
Discovering Symbolic Laws Directly from Trajectories with Hamiltonian
  Graph Neural Networks
Discovering Symbolic Laws Directly from Trajectories with Hamiltonian Graph Neural Networks
S. Bishnoi
Ravinder Bhattoo
J. Jayadeva
Sayan Ranu
N. M. A. Krishnan
PINN
AI4CE
34
1
0
11 Jul 2023
Pseudo-Hamiltonian neural networks for learning partial differential
  equations
Pseudo-Hamiltonian neural networks for learning partial differential equations
Sølve Eidnes
K. Lye
18
10
0
27 Apr 2023
Compositional Learning of Dynamical System Models Using Port-Hamiltonian
  Neural Networks
Compositional Learning of Dynamical System Models Using Port-Hamiltonian Neural Networks
Cyrus Neary
Ufuk Topcu
PINN
AI4CE
6
12
0
01 Dec 2022
Lie Group Forced Variational Integrator Networks for Learning and
  Control of Robot Systems
Lie Group Forced Variational Integrator Networks for Learning and Control of Robot Systems
Valentin Duruisseaux
T. Duong
Melvin Leok
Nikolay A. Atanasov
DRL
AI4CE
13
12
0
29 Nov 2022
Unravelling the Performance of Physics-informed Graph Neural Networks
  for Dynamical Systems
Unravelling the Performance of Physics-informed Graph Neural Networks for Dynamical Systems
A. Thangamuthu
Gunjan Kumar
S. Bishnoi
Ravinder Bhattoo
N. M. A. Krishnan
Sayan Ranu
AI4CE
PINN
32
22
0
10 Nov 2022
Port-metriplectic neural networks: thermodynamics-informed machine
  learning of complex physical systems
Port-metriplectic neural networks: thermodynamics-informed machine learning of complex physical systems
Quercus Hernandez
Alberto Badías
Francisco Chinesta
Elías Cueto
PINN
AI4CE
27
13
0
03 Nov 2022
Approximation of nearly-periodic symplectic maps via
  structure-preserving neural networks
Approximation of nearly-periodic symplectic maps via structure-preserving neural networks
Valentin Duruisseaux
J. Burby
Q. Tang
30
11
0
11 Oct 2022
Learning Interpretable Dynamics from Images of a Freely Rotating 3D
  Rigid Body
Learning Interpretable Dynamics from Images of a Freely Rotating 3D Rigid Body
J. Mason
Christine Allen-Blanchette
Nicholas Zolman
Elizabeth Davison
Naomi Ehrich Leonard
3DH
AI4CE
35
8
0
23 Sep 2022
Learning the Dynamics of Particle-based Systems with Lagrangian Graph
  Neural Networks
Learning the Dynamics of Particle-based Systems with Lagrangian Graph Neural Networks
Ravinder Bhattoo
Sayan Ranu
N. M. A. Krishnan
PINN
AI4CE
28
20
0
03 Sep 2022
Constants of motion network
Constants of motion network
M. F. Kasim
Yi Heng Lim
17
4
0
22 Aug 2022
Thermodynamics of learning physical phenomena
Thermodynamics of learning physical phenomena
Elías Cueto
Francisco Chinesta
AI4CE
25
22
0
26 Jul 2022
A Review of Machine Learning Methods Applied to Structural Dynamics and
  Vibroacoustic
A Review of Machine Learning Methods Applied to Structural Dynamics and Vibroacoustic
Barbara Z Cunha
C. Droz
A. Zine
Stéphane Foulard
M. Ichchou
AI4CE
29
84
0
13 Apr 2022
Deconstructing the Inductive Biases of Hamiltonian Neural Networks
Deconstructing the Inductive Biases of Hamiltonian Neural Networks
Nate Gruver
Marc Finzi
Samuel Stanton
A. Wilson
AI4CE
15
39
0
10 Feb 2022
Dissipative Hamiltonian Neural Networks: Learning Dissipative and
  Conservative Dynamics Separately
Dissipative Hamiltonian Neural Networks: Learning Dissipative and Conservative Dynamics Separately
A. Sosanya
S. Greydanus
PINN
AI4CE
38
26
0
25 Jan 2022
SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred
  from Vision
SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred from Vision
I. Higgins
Peter Wirnsberger
Andrew Jaegle
Aleksandar Botev
37
7
0
10 Nov 2021
Which priors matter? Benchmarking models for learning latent dynamics
Which priors matter? Benchmarking models for learning latent dynamics
Aleksandar Botev
Andrew Jaegle
Peter Wirnsberger
Daniel Hennes
I. Higgins
AI4CE
19
28
0
09 Nov 2021
One-Shot Transfer Learning of Physics-Informed Neural Networks
One-Shot Transfer Learning of Physics-Informed Neural Networks
Shaan Desai
M. Mattheakis
H. Joy
P. Protopapas
Stephen J. Roberts
PINN
AI4CE
14
58
0
21 Oct 2021
Structure-preserving Sparse Identification of Nonlinear Dynamics for
  Data-driven Modeling
Structure-preserving Sparse Identification of Nonlinear Dynamics for Data-driven Modeling
Kookjin Lee
Nathaniel Trask
P. Stinis
32
24
0
11 Sep 2021
Which Neural Network to Choose for Post-Fault Localization, Dynamic
  State Estimation and Optimal Measurement Placement in Power Systems?
Which Neural Network to Choose for Post-Fault Localization, Dynamic State Estimation and Optimal Measurement Placement in Power Systems?
A. Afonin
Michael Chertkov
17
3
0
07 Apr 2021
Extending Lagrangian and Hamiltonian Neural Networks with Differentiable
  Contact Models
Extending Lagrangian and Hamiltonian Neural Networks with Differentiable Contact Models
Yaofeng Desmond Zhong
Biswadip Dey
Amit Chakraborty
52
34
0
12 Feb 2021
1