ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.09505
  4. Cited By
Estimating Q(s,s') with Deep Deterministic Dynamics Gradients

Estimating Q(s,s') with Deep Deterministic Dynamics Gradients

21 February 2020
Ashley D. Edwards
Himanshu Sahni
Rosanne Liu
Jane Hung
Ankit Jain
Rui Wang
Adrien Ecoffet
Thomas Miconi
Charles Isbell
J. Yosinski
    OffRL
ArXivPDFHTML

Papers citing "Estimating Q(s,s') with Deep Deterministic Dynamics Gradients"

6 / 6 papers shown
Title
State-Constrained Offline Reinforcement Learning
State-Constrained Offline Reinforcement Learning
Charles A. Hepburn
Yue Jin
Giovanni Montana
OffRL
35
0
0
23 May 2024
ROMA-iQSS: An Objective Alignment Approach via State-Based Value
  Learning and ROund-Robin Multi-Agent Scheduling
ROMA-iQSS: An Objective Alignment Approach via State-Based Value Learning and ROund-Robin Multi-Agent Scheduling
Chi-Hui Lin
Joewie J. Koh
A. Roncone
Lijun Chen
34
0
0
05 Apr 2024
MAHALO: Unifying Offline Reinforcement Learning and Imitation Learning
  from Observations
MAHALO: Unifying Offline Reinforcement Learning and Imitation Learning from Observations
Anqi Li
Byron Boots
Ching-An Cheng
OffRL
28
16
0
30 Mar 2023
Plan Your Target and Learn Your Skills: Transferable State-Only
  Imitation Learning via Decoupled Policy Optimization
Plan Your Target and Learn Your Skills: Transferable State-Only Imitation Learning via Decoupled Policy Optimization
Minghuan Liu
Zhengbang Zhu
Yuzheng Zhuang
Weinan Zhang
Jianye Hao
Yong Yu
Jun Wang
27
11
0
04 Mar 2022
Reinforcement Learning with Videos: Combining Offline Observations with
  Interaction
Reinforcement Learning with Videos: Combining Offline Observations with Interaction
Karl Schmeckpeper
Oleh Rybkin
Kostas Daniilidis
Sergey Levine
Chelsea Finn
OffRL
16
105
0
12 Nov 2020
State Action Separable Reinforcement Learning
State Action Separable Reinforcement Learning
Ziyao Zhang
Liang Ma
K. Leung
Konstantinos Poularakis
M. Srivatsa
31
2
0
05 Jun 2020
1