ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.10029
77
22
v1v2 (latest)

Symbolic Querying of Vector Spaces: Probabilistic Databases Meets Relational Embeddings

24 February 2020
Tal Friedman
Guy Van den Broeck
ArXiv (abs)PDFHTML
Abstract

We propose unifying techniques from probabilistic databases and relational embedding models with the goal of performing complex queries on incomplete and uncertain data. We formalize a probabilistic database model with respect to which all queries are done. This allows us to leverage the rich literature of theory and algorithms from probabilistic databases for solving problems. While this formalization can be used with any relational embedding model, the lack of a well-defined joint probability distribution causes simple query problems to become provably hard. With this in mind, we introduce \TO, a relational embedding model designed to be a tractable probabilistic database, by exploiting typical embedding assumptions within the probabilistic framework. Using a principled, efficient inference algorithm that can be derived from its definition, we empirically demonstrate that \TOs is an effective and general model for these querying tasks.

View on arXiv
Comments on this paper