ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.10029
79
22
v1v2 (latest)

Symbolic Querying of Vector Spaces: Probabilistic Databases Meets Relational Embeddings

24 February 2020
Tal Friedman
Guy Van den Broeck
ArXiv (abs)PDFHTML
Abstract

To deal with increasing amounts of uncertainty and incompleteness in relational data, we propose unifying techniques from probabilistic databases and relational embedding models. We use probabilistic databases as our formalism to define the probabilistic model with respect to which all queries are done. This allows us to leverage the rich literature of theory and algorithms from probabilistic databases for solving problems. While this formalization can be used with any relational embedding model, the lack of a well defined joint probability distribution causes simple problems to become provably hard. With this in mind, we introduce \TO, a relational embedding model designed in terms of probabilistic databases to exploit typical embedding assumptions within the probabilistic framework. Using principled, efficient inference algorithms that can be derived from its definition, we empirically demonstrate that \TOs is an effective and general model for these tasks.

View on arXiv
Comments on this paper