Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.10689
Cited By
A Theory of Usable Information Under Computational Constraints
25 February 2020
Yilun Xu
Shengjia Zhao
Jiaming Song
Russell Stewart
Stefano Ermon
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A Theory of Usable Information Under Computational Constraints"
50 / 104 papers shown
Title
LEACE: Perfect linear concept erasure in closed form
Nora Belrose
David Schneider-Joseph
Shauli Ravfogel
Ryan Cotterell
Edward Raff
Stella Biderman
KELM
MU
178
120
0
06 Jun 2023
Gaussian Process Probes (GPP) for Uncertainty-Aware Probing
Zehao Wang
Alexander Ku
Jason Baldridge
Thomas Griffiths
Been Kim
UQCV
84
13
0
29 May 2023
Disentanglement via Latent Quantization
Kyle Hsu
W. Dorrell
James C. R. Whittington
Jiajun Wu
Chelsea Finn
DRL
161
27
0
28 May 2023
FairDP: Certified Fairness with Differential Privacy
K. Tran
Ferdinando Fioretto
Issa M. Khalil
My T. Thai
Nhathai Phan
79
0
0
25 May 2023
ReCEval: Evaluating Reasoning Chains via Correctness and Informativeness
Archiki Prasad
Swarnadeep Saha
Xiang Zhou
Joey Tianyi Zhou
LRM
114
50
0
21 Apr 2023
On the Perception of Difficulty: Differences between Humans and AI
Philipp Spitzer
Joshua Holstein
Michael Vossing
Niklas Kühl
66
0
0
19 Apr 2023
To Compress or Not to Compress- Self-Supervised Learning and Information Theory: A Review
Ravid Shwartz-Ziv
Yann LeCun
SSL
117
75
0
19 Apr 2023
VNE: An Effective Method for Improving Deep Representation by Manipulating Eigenvalue Distribution
Jaeill Kim
Suhyun Kang
Duhun Hwang
Jungwook Shin
Wonjong Rhee
DRL
109
23
0
04 Apr 2023
Predictive Heterogeneity: Measures and Applications
Jiashuo Liu
Jiayun Wu
Yangqiu Song
Peng Cui
72
1
0
01 Apr 2023
FedML-HE: An Efficient Homomorphic-Encryption-Based Privacy-Preserving Federated Learning System
Weizhao Jin
Yuhang Yao
Shanshan Han
Jiajun Gu
Carlee Joe-Wong
Yu Yang
A. Avestimehr
Chaoyang He
FedML
121
59
0
20 Mar 2023
Probing Graph Representations
Mohammad Sadegh Akhondzadeh
Vijay Lingam
Aleksandar Bojchevski
95
10
0
07 Mar 2023
RePrompt: Automatic Prompt Editing to Refine AI-Generative Art Towards Precise Expressions
Yunlong Wang
Shuyuan Shen
Brian Y. Lim
92
95
0
19 Feb 2023
Beyond Distribution Shift: Spurious Features Through the Lens of Training Dynamics
Nihal Murali
A. Puli
Ke Yu
Rajesh Ranganath
Kayhan Batmanghelich
AAML
84
10
0
18 Feb 2023
Position Matters! Empirical Study of Order Effect in Knowledge-grounded Dialogue
Hsuan Su
Shachi H. Kumar
Sahisnu Mazumder
Wenda Chen
R. Manuvinakurike
Eda Okur
Saurav Sahay
L. Nachman
Shang-Tse Chen
Hung-yi Lee
42
3
0
12 Feb 2023
Evaluating Self-Supervised Learning via Risk Decomposition
Yann Dubois
Tatsunori Hashimoto
Percy Liang
64
9
0
06 Feb 2023
Can We Use Probing to Better Understand Fine-tuning and Knowledge Distillation of the BERT NLU?
Jakub Ho'scilowicz
Marcin Sowanski
Piotr Czubowski
Artur Janicki
59
2
0
27 Jan 2023
Explanation Regeneration via Information Bottleneck
Qintong Li
Zhiyong Wu
Lingpeng Kong
Wei Bi
93
4
0
19 Dec 2022
The Architectural Bottleneck Principle
Tiago Pimentel
Josef Valvoda
Niklas Stoehr
Ryan Cotterell
47
5
0
11 Nov 2022
Log-linear Guardedness and its Implications
Shauli Ravfogel
Yoav Goldberg
Ryan Cotterell
125
2
0
18 Oct 2022
FARE: Provably Fair Representation Learning with Practical Certificates
Nikola Jovanović
Mislav Balunović
Dimitar I. Dimitrov
Martin Vechev
210
13
0
13 Oct 2022
REV: Information-Theoretic Evaluation of Free-Text Rationales
Hanjie Chen
Faeze Brahman
Xiang Ren
Yangfeng Ji
Yejin Choi
Swabha Swayamdipta
131
24
0
10 Oct 2022
Critical Learning Periods for Multisensory Integration in Deep Networks
Michael Kleinman
Alessandro Achille
Stefano Soatto
116
11
0
06 Oct 2022
SynBench: Task-Agnostic Benchmarking of Pretrained Representations using Synthetic Data
Ching-Yun Ko
Pin-Yu Chen
Jeet Mohapatra
Payel Das
Lucani E. Daniel
111
3
0
06 Oct 2022
A Measure of the Complexity of Neural Representations based on Partial Information Decomposition
David A. Ehrlich
Andreas C. Schneider
V. Priesemann
Michael Wibral
Abdullah Makkeh
87
18
0
21 Sep 2022
Improving Self-Supervised Learning by Characterizing Idealized Representations
Yann Dubois
Tatsunori Hashimoto
Stefano Ermon
Percy Liang
SSL
165
43
0
13 Sep 2022
Machine Learning with Confidential Computing: A Systematization of Knowledge
Fan Mo
Zahra Tarkhani
Hamed Haddadi
94
10
0
22 Aug 2022
Information Processing Equalities and the Information-Risk Bridge
Robert C. Williamson
Zac Cranko
70
5
0
25 Jul 2022
On the Learning of Non-Autoregressive Transformers
Fei Huang
Tianhua Tao
Hao Zhou
Lei Li
Minlie Huang
AI4TS
92
25
0
13 Jun 2022
Gacs-Korner Common Information Variational Autoencoder
Michael Kleinman
Alessandro Achille
Stefano Soatto
J. Kao
CML
DRL
64
13
0
24 May 2022
Probing for the Usage of Grammatical Number
Karim Lasri
Tiago Pimentel
Alessandro Lenci
Thierry Poibeau
Ryan Cotterell
80
58
0
19 Apr 2022
Word Order Does Matter (And Shuffled Language Models Know It)
Vinit Ravishankar
Mostafa Abdou
Artur Kulmizev
Anders Søgaard
76
45
0
21 Mar 2022
Towards the Explanation of Graph Neural Networks in Digital Pathology with Information Flows
Junchi Yu
Tingyang Xu
Ran He
81
6
0
18 Dec 2021
Acquisition of Chess Knowledge in AlphaZero
Thomas McGrath
A. Kapishnikov
Nenad Tomašev
Adam Pearce
Demis Hassabis
Been Kim
Ulrich Paquet
Vladimir Kramnik
77
169
0
17 Nov 2021
Quantifying the Task-Specific Information in Text-Based Classifications
Zining Zhu
Aparna Balagopalan
Marzyeh Ghassemi
Frank Rudzicz
76
4
0
17 Oct 2021
Conditional probing: measuring usable information beyond a baseline
John Hewitt
Kawin Ethayarajh
Percy Liang
Christopher D. Manning
90
57
0
19 Sep 2021
A Bayesian Framework for Information-Theoretic Probing
Tiago Pimentel
Ryan Cotterell
72
25
0
08 Sep 2021
Towards Out-Of-Distribution Generalization: A Survey
Jiashuo Liu
Zheyan Shen
Yue He
Xingxuan Zhang
Renzhe Xu
Han Yu
Peng Cui
CML
OOD
168
536
0
31 Aug 2021
Tight Mutual Information Estimation With Contrastive Fenchel-Legendre Optimization
Qing Guo
Junya Chen
Dong Wang
Yuewei Yang
Xinwei Deng
Lawrence Carin
Fan Li
Jing-Zheng Huang
Chenyang Tao
83
21
0
02 Jul 2021
A Practical & Unified Notation for Information-Theoretic Quantities in ML
Andreas Kirsch
Y. Gal
93
7
0
22 Jun 2021
Lossy Compression for Lossless Prediction
Yann Dubois
Benjamin Bloem-Reddy
Karen Ullrich
Chris J. Maddison
139
62
0
21 Jun 2021
What Context Features Can Transformer Language Models Use?
J. O'Connor
Jacob Andreas
KELM
77
79
0
15 Jun 2021
Temporal Predictive Coding For Model-Based Planning In Latent Space
Tung D. Nguyen
Rui Shu
Tu Pham
Hung Bui
Stefano Ermon
OffRL
96
59
0
14 Jun 2021
Fair Normalizing Flows
Mislav Balunović
Anian Ruoss
Martin Vechev
AAML
57
38
0
10 Jun 2021
Quantifying and Localizing Usable Information Leakage from Neural Network Gradients
Fan Mo
Anastasia Borovykh
Mohammad Malekzadeh
Soteris Demetriou
Deniz Gündüz
Hamed Haddadi
FedML
31
3
0
28 May 2021
Spectral Roll-off Points Variations: Exploring Useful Information in Feature Maps by Its Variations
Yunkai Yu
Yuyang You
Zhihong Yang
Guozheng Liu
Peiyao Li
Zhicheng Yang
Wenjing Shan
37
2
0
31 Jan 2021
Controllable Guarantees for Fair Outcomes via Contrastive Information Estimation
Umang Gupta
Aaron Ferber
B. Dilkina
Greg Ver Steeg
113
58
0
11 Jan 2021
Layer-wise Characterization of Latent Information Leakage in Federated Learning
Fan Mo
Anastasia Borovykh
Mohammad Malekzadeh
Hamed Haddadi
Soteris Demetriou
FedML
76
31
0
17 Oct 2020
Usable Information and Evolution of Optimal Representations During Training
Michael Kleinman
Alessandro Achille
Daksh Idnani
J. Kao
79
13
0
06 Oct 2020
Learning Optimal Representations with the Decodable Information Bottleneck
Yann Dubois
Douwe Kiela
D. Schwab
Ramakrishna Vedantam
115
43
0
27 Sep 2020
Evaluating representations by the complexity of learning low-loss predictors
William F. Whitney
M. Song
David Brandfonbrener
Jaan Altosaar
Kyunghyun Cho
76
24
0
15 Sep 2020
Previous
1
2
3
Next