ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.11543
  4. Cited By
Towards new cross-validation-based estimators for Gaussian process
  regression: efficient adjoint computation of gradients
v1v2 (latest)

Towards new cross-validation-based estimators for Gaussian process regression: efficient adjoint computation of gradients

26 February 2020
S. Petit
Julien Bect
Sébastien Da Veiga
Paul Feliot
E. Vázquez
ArXiv (abs)PDFHTML

Papers citing "Towards new cross-validation-based estimators for Gaussian process regression: efficient adjoint computation of gradients"

5 / 5 papers shown
Title
Robust and Conjugate Gaussian Process Regression
Robust and Conjugate Gaussian Process Regression
Matias Altamirano
F. Briol
Jeremias Knoblauch
84
13
0
01 Nov 2023
Parameter selection in Gaussian process interpolation: an empirical
  study of selection criteria
Parameter selection in Gaussian process interpolation: an empirical study of selection criteria
S. Petit
Julien Bect
Paul Feliot
E. Vázquez
62
11
0
13 Jul 2021
Scalable Cross Validation Losses for Gaussian Process Models
Scalable Cross Validation Losses for Gaussian Process Models
M. Jankowiak
Geoff Pleiss
65
6
0
24 May 2021
Numerical issues in maximum likelihood parameter estimation for Gaussian
  process interpolation
Numerical issues in maximum likelihood parameter estimation for Gaussian process interpolation
S. Basak
S. Petit
Julien Bect
E. Vázquez
48
14
0
24 Jan 2021
Fast calculation of Gaussian Process multiple-fold cross-validation
  residuals and their covariances
Fast calculation of Gaussian Process multiple-fold cross-validation residuals and their covariances
D. Ginsbourger
Cedric Scharer
47
9
0
08 Jan 2021
1