ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.12388
  4. Cited By
Tensor network approaches for learning non-linear dynamical laws

Tensor network approaches for learning non-linear dynamical laws

27 February 2020
Alex Goessmann
M. Götte
I. Roth
R. Sweke
Gitta Kutyniok
Jens Eisert
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "Tensor network approaches for learning non-linear dynamical laws"

4 / 4 papers shown
Title
Scalably learning quantum many-body Hamiltonians from dynamical data
Scalably learning quantum many-body Hamiltonians from dynamical data
Frederik Wilde
A. Kshetrimayum
I. Roth
D. Hangleiter
R. Sweke
Jens Eisert
AI4CE
54
30
0
28 Sep 2022
AI Descartes: Combining Data and Theory for Derivable Scientific
  Discovery
AI Descartes: Combining Data and Theory for Derivable Scientific Discovery
Cristina Cornelio
S. Dash
V. Austel
Tyler R. Josephson
Joao Goncalves
K. Clarkson
N. Megiddo
Bachir El Khadir
L. Horesh
AI4CE
96
7
0
03 Sep 2021
Convergence bounds for nonlinear least squares and applications to
  tensor recovery
Convergence bounds for nonlinear least squares and applications to tensor recovery
Philipp Trunschke
33
7
0
11 Aug 2021
Automatic Differentiation to Simultaneously Identify Nonlinear Dynamics
  and Extract Noise Probability Distributions from Data
Automatic Differentiation to Simultaneously Identify Nonlinear Dynamics and Extract Noise Probability Distributions from Data
Kadierdan Kaheman
Steven L. Brunton
J. Nathan Kutz
75
84
0
12 Sep 2020
1