Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2003.01629
Cited By
Can Increasing Input Dimensionality Improve Deep Reinforcement Learning?
3 March 2020
Keita Ota
Tomoaki Oiki
Devesh K. Jha
T. Mariyama
D. Nikovski
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Can Increasing Input Dimensionality Improve Deep Reinforcement Learning?"
6 / 6 papers shown
Title
Hyperspherical Normalization for Scalable Deep Reinforcement Learning
Hojoon Lee
Youngdo Lee
Takuma Seno
Donghu Kim
Peter Stone
Jaegul Choo
70
1
0
24 Feb 2025
Cross-Domain Policy Adaptation by Capturing Representation Mismatch
Jiafei Lyu
Chenjia Bai
Jingwen Yang
Zongqing Lu
Xiu Li
35
9
0
24 May 2024
Bridging State and History Representations: Understanding Self-Predictive RL
Tianwei Ni
Benjamin Eysenbach
Erfan Seyedsalehi
Michel Ma
Clement Gehring
Aditya Mahajan
Pierre-Luc Bacon
AI4TS
AI4CE
29
21
0
17 Jan 2024
Intelligent DRL-Based Adaptive Region of Interest for Delay-sensitive Telemedicine Applications
Abdulrahman Soliman
Amr M. Mohamed
Elias Yaacoub
Nikhil V. Navkar
A. Erbad
16
2
0
08 Oct 2023
A Survey on Transformers in Reinforcement Learning
Wenzhe Li
Hao Luo
Zichuan Lin
Chongjie Zhang
Zongqing Lu
Deheng Ye
OffRL
MU
AI4CE
37
56
0
08 Jan 2023
Training Larger Networks for Deep Reinforcement Learning
Keita Ota
Devesh K. Jha
Asako Kanezaki
OffRL
37
39
0
16 Feb 2021
1