Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2003.01993
Cited By
Metrics and methods for robustness evaluation of neural networks with generative models
4 March 2020
Igor Buzhinsky
Arseny Nerinovsky
S. Tripakis
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Metrics and methods for robustness evaluation of neural networks with generative models"
7 / 7 papers shown
Title
Recent Advances in Understanding Adversarial Robustness of Deep Neural Networks
Tao Bai
Jinqi Luo
Jun Zhao
AAML
43
8
0
03 Nov 2020
CNN-Cert: An Efficient Framework for Certifying Robustness of Convolutional Neural Networks
Akhilan Boopathy
Tsui-Wei Weng
Pin-Yu Chen
Sijia Liu
Luca Daniel
AAML
108
138
0
29 Nov 2018
Constructing Unrestricted Adversarial Examples with Generative Models
Yang Song
Rui Shu
Nate Kushman
Stefano Ermon
GAN
AAML
185
302
0
21 May 2018
DeepSafe: A Data-driven Approach for Checking Adversarial Robustness in Neural Networks
D. Gopinath
Guy Katz
C. Păsăreanu
Clark W. Barrett
AAML
42
87
0
02 Oct 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
228
1,835
0
03 Feb 2017
Conditional Image Synthesis With Auxiliary Classifier GANs
Augustus Odena
C. Olah
Jonathon Shlens
GAN
238
3,190
0
30 Oct 2016
Safety Verification of Deep Neural Networks
Xiaowei Huang
M. Kwiatkowska
Sen Wang
Min Wu
AAML
180
932
0
21 Oct 2016
1