ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.03320
  4. Cited By
Trends and Advancements in Deep Neural Network Communication

Trends and Advancements in Deep Neural Network Communication

6 March 2020
Felix Sattler
Thomas Wiegand
Wojciech Samek
    GNN
ArXivPDFHTML

Papers citing "Trends and Advancements in Deep Neural Network Communication"

4 / 4 papers shown
Title
Bristle: Decentralized Federated Learning in Byzantine, Non-i.i.d.
  Environments
Bristle: Decentralized Federated Learning in Byzantine, Non-i.i.d. Environments
Joost Verbraeken
M. Vos
J. Pouwelse
28
4
0
21 Oct 2021
Megatron-LM: Training Multi-Billion Parameter Language Models Using
  Model Parallelism
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
M. Shoeybi
M. Patwary
Raul Puri
P. LeGresley
Jared Casper
Bryan Catanzaro
MoE
245
1,817
0
17 Sep 2019
DeepCABAC: A Universal Compression Algorithm for Deep Neural Networks
DeepCABAC: A Universal Compression Algorithm for Deep Neural Networks
Simon Wiedemann
H. Kirchhoffer
Stefan Matlage
Paul Haase
Arturo Marbán
...
Ahmed Osman
D. Marpe
H. Schwarz
Thomas Wiegand
Wojciech Samek
41
92
0
27 Jul 2019
Universal Deep Neural Network Compression
Universal Deep Neural Network Compression
Yoojin Choi
Mostafa El-Khamy
Jungwon Lee
MQ
81
85
0
07 Feb 2018
1