ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.03621
  4. Cited By
Large-scale benchmark study of survival prediction methods using
  multi-omics data

Large-scale benchmark study of survival prediction methods using multi-omics data

7 March 2020
Moritz Herrmann
Philipp Probst
R. Hornung
V. Jurinovic
A. Boulesteix
ArXiv (abs)PDFHTML

Papers citing "Large-scale benchmark study of survival prediction methods using multi-omics data"

11 / 11 papers shown
Title
A Large-Scale Neutral Comparison Study of Survival Models on
  Low-Dimensional Data
A Large-Scale Neutral Comparison Study of Survival Models on Low-Dimensional Data
Lukas Burk
John Zobolas
Bernd Bischl
Andreas Bender
Marvin N. Wright
R. Sonabend
71
2
0
06 Jun 2024
Interpretable Machine Learning for Survival Analysis
Interpretable Machine Learning for Survival Analysis
Sophie Hanna Langbein
Mateusz Krzyzinski
Mikolaj Spytek
Hubert Baniecki
P. Biecek
Marvin N. Wright
85
2
0
15 Mar 2024
penalizedclr: an R package for penalized conditional logistic regression
  for integration of multiple omics layers
penalizedclr: an R package for penalized conditional logistic regression for integration of multiple omics layers
Vera Djordjilović
Erica Ponzi
T. Nøst
M. Thoresen
19
2
0
02 Feb 2024
Examining marginal properness in the external validation of survival models with squared and logarithmic losses
Examining marginal properness in the external validation of survival models with squared and logarithmic losses
R. Sonabend
John Zobolas
Riccardo Be Bin
Philipp Kopper
Lukas Burk
Andreas Bender
71
3
0
10 Dec 2022
Avoiding C-hacking when evaluating survival distribution predictions
  with discrimination measures
Avoiding C-hacking when evaluating survival distribution predictions with discrimination measures
R. Sonabend
Andreas Bender
Sandra Jeanne Vollmer
33
15
0
09 Dec 2021
Hyperparameters and Tuning Strategies for Random Forest
Hyperparameters and Tuning Strategies for Random Forest
Philipp Probst
Marvin N. Wright
A. Boulesteix
168
1,424
0
10 Apr 2018
OpenML: An R Package to Connect to the Machine Learning Platform OpenML
OpenML: An R Package to Connect to the Machine Learning Platform OpenML
Giuseppe Casalicchio
Jakob Bossek
Michel Lang
Dominik Kirchhoff
P. Kerschke
B. Hofner
H. Seibold
Joaquin Vanschoren
B. Bischl
VLMLRM
89
57
0
05 Jan 2017
ranger: A Fast Implementation of Random Forests for High Dimensional
  Data in C++ and R
ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R
Marvin N. Wright
A. Ziegler
306
2,820
0
18 Aug 2015
Domain-Adversarial Training of Neural Networks
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
E. Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
M. Marchand
Victor Lempitsky
GANOOD
557
9,548
0
28 May 2015
OpenML: networked science in machine learning
OpenML: networked science in machine learning
Joaquin Vanschoren
Jan N. van Rijn
B. Bischl
Luís Torgo
FedMLAI4CE
193
1,334
0
29 Jul 2014
A Plea for Neutral Comparison Studies in Computational Sciences
A Plea for Neutral Comparison Studies in Computational Sciences
A. Boulesteix
M. Eugster
123
122
0
13 Aug 2012
1