ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.03849
  4. Cited By
Active Fine-Tuning from gMAD Examples Improves Blind Image Quality
  Assessment

Active Fine-Tuning from gMAD Examples Improves Blind Image Quality Assessment

8 March 2020
Zhihua Wang
Kede Ma
    AAML
ArXivPDFHTML

Papers citing "Active Fine-Tuning from gMAD Examples Improves Blind Image Quality Assessment"

6 / 6 papers shown
Title
Max360IQ: Blind Omnidirectional Image Quality Assessment with Multi-axis Attention
Max360IQ: Blind Omnidirectional Image Quality Assessment with Multi-axis Attention
Jiebin Yan
Ziwen Tan
Yuming Fang
Jiale Rao
Yifan Zuo
53
1
0
26 Feb 2025
G-Refine: A General Quality Refiner for Text-to-Image Generation
G-Refine: A General Quality Refiner for Text-to-Image Generation
Chunyi Li
Haoning Wu
Hongkun Hao
Zicheng Zhang
Tengchaun Kou
Chaofeng Chen
Lei Bai
Xiaohong Liu
Weisi Lin
Guangtao Zhai
27
4
0
29 Apr 2024
Blind Image Quality Assessment via Vision-Language Correspondence: A
  Multitask Learning Perspective
Blind Image Quality Assessment via Vision-Language Correspondence: A Multitask Learning Perspective
Weixia Zhang
Guangtao Zhai
Ying Wei
Xiaokang Yang
Kede Ma
VLM
32
170
0
27 Mar 2023
Learning Transformer Features for Image Quality Assessment
Learning Transformer Features for Image Quality Assessment
Chao Zeng
Sam Kwong
ViT
17
3
0
01 Dec 2021
Troubleshooting Blind Image Quality Models in the Wild
Troubleshooting Blind Image Quality Models in the Wild
Zhihua Wang
Haotao Wang
Tianlong Chen
Zhangyang Wang
Kede Ma
15
19
0
14 May 2021
Continual Learning for Blind Image Quality Assessment
Continual Learning for Blind Image Quality Assessment
Weixia Zhang
Dingquan Li
Chao Ma
Guangtao Zhai
Xiaokang Yang
Kede Ma
VLM
24
86
0
19 Feb 2021
1