Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2003.04180
Cited By
Approximate is Good Enough: Probabilistic Variants of Dimensional and Margin Complexity
9 March 2020
Pritish Kamath
Omar Montasser
Nathan Srebro
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Approximate is Good Enough: Probabilistic Variants of Dimensional and Margin Complexity"
8 / 8 papers shown
Title
The Power of Random Features and the Limits of Distribution-Free Gradient Descent
Ari Karchmer
Eran Malach
28
0
0
15 May 2025
Pareto Frontiers in Neural Feature Learning: Data, Compute, Width, and Luck
Benjamin L. Edelman
Surbhi Goel
Sham Kakade
Eran Malach
Cyril Zhang
50
8
0
07 Sep 2023
Hidden Progress in Deep Learning: SGD Learns Parities Near the Computational Limit
Boaz Barak
Benjamin L. Edelman
Surbhi Goel
Sham Kakade
Eran Malach
Cyril Zhang
44
124
0
18 Jul 2022
Random Feature Amplification: Feature Learning and Generalization in Neural Networks
Spencer Frei
Niladri S. Chatterji
Peter L. Bartlett
MLT
35
29
0
15 Feb 2022
Quantum machine learning beyond kernel methods
Sofiene Jerbi
Lukas J. Fiderer
Hendrik Poulsen Nautrup
Jonas M. Kubler
Hans J. Briegel
Vedran Dunjko
19
162
0
25 Oct 2021
Reconstruction on Trees and Low-Degree Polynomials
Frederic Koehler
Elchanan Mossel
35
9
0
14 Sep 2021
The Connection Between Approximation, Depth Separation and Learnability in Neural Networks
Eran Malach
Gilad Yehudai
Shai Shalev-Shwartz
Ohad Shamir
26
20
0
31 Jan 2021
A case where a spindly two-layer linear network whips any neural network with a fully connected input layer
Manfred K. Warmuth
W. Kotłowski
Ehsan Amid
MLT
36
1
0
16 Oct 2020
1