Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2003.04934
Cited By
Automated discovery of a robust interatomic potential for aluminum
10 March 2020
Justin S. Smith
B. Nebgen
N. Mathew
Jie Chen
Nicholas Lubbers
L. Burakovsky
S. Tretiak
H. Nam
T. Germann
S. Fensin
K. Barros
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Automated discovery of a robust interatomic potential for aluminum"
8 / 8 papers shown
Title
Deciphering diffuse scattering with machine learning and the equivariant foundation model: The case of molten FeO
Ganesh Sivaraman
C. Benmore
AI4CE
21
0
0
01 Mar 2024
Spline-based neural network interatomic potentials: blending classical and machine learning models
Joshua A Vita
D. Trinkle
14
2
0
04 Oct 2023
Accurate melting point prediction through autonomous physics-informed learning
O. Klimanova
Timofei Miryashkin
Alexander Shapeev
4
3
0
23 Jun 2023
Data efficiency and extrapolation trends in neural network interatomic potentials
Joshua A Vita
Daniel Schwalbe-Koda
42
16
0
12 Feb 2023
Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls
Stephan Thaler
Gregor Doehner
Julija Zavadlav
35
21
0
15 Dec 2022
Injecting Domain Knowledge from Empirical Interatomic Potentials to Neural Networks for Predicting Material Properties
Zeren Shui
Daniel S. Karls
Mingjian Wen
Ilia Nikiforov
E. Tadmor
George Karypis
46
7
0
14 Oct 2022
Simple and efficient algorithms for training machine learning potentials to force data
Justin S. Smith
Nicholas Lubbers
A. Thompson
K. Barros
20
10
0
09 Jun 2020
Modeling nanoconfinement effects using active learning
Javier E. Santos
M. Mehana
Hao Wu
M. Prodanović
Michael J. Pyrcz
Q. Kang
Nicholas Lubbers
Hari S. Viswanathan
AI4CE
9
29
0
06 May 2020
1