ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.05425
  4. Cited By
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric
  graphs

Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs

11 March 2020
P. D. Haan
Maurice Weiler
Taco S. Cohen
Max Welling
ArXivPDFHTML

Papers citing "Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs"

4 / 4 papers shown
Title
Symmetries-enhanced Multi-Agent Reinforcement Learning
Symmetries-enhanced Multi-Agent Reinforcement Learning
N. Bousias
Stefanos Pertigkiozoglou
Kostas Daniilidis
George Pappas
AI4CE
65
0
0
02 Jan 2025
A General Theory of Equivariant CNNs on Homogeneous Spaces
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLT
AI4CE
141
289
0
05 Nov 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
231
1,801
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
228
3,202
0
24 Nov 2016
1