ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.06516
  4. Cited By
Deep Representation Learning of Electronic Health Records to Unlock
  Patient Stratification at Scale

Deep Representation Learning of Electronic Health Records to Unlock Patient Stratification at Scale

14 March 2020
Isotta Landi
B. Glicksberg
Hao-Chih Lee
S. Cherng
Giulia Landi
M. Danieletto
J. Dudley
Cesare Furlanello
Riccardo Miotto
ArXivPDFHTML

Papers citing "Deep Representation Learning of Electronic Health Records to Unlock Patient Stratification at Scale"

1 / 1 papers shown
Title
MUSE-Net: Missingness-aware mUlti-branching Self-attention Encoder for Irregular Longitudinal Electronic Health Records
MUSE-Net: Missingness-aware mUlti-branching Self-attention Encoder for Irregular Longitudinal Electronic Health Records
Zekai Wang
Tieming Liu
B. Yao
21
0
0
30 Jun 2024
1