ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.07955
  4. Cited By
An End-to-end Framework For Low-Resolution Remote Sensing Semantic
  Segmentation

An End-to-end Framework For Low-Resolution Remote Sensing Semantic Segmentation

17 March 2020
M. B. Pereira
J. A. dos Santos
ArXivPDFHTML

Papers citing "An End-to-end Framework For Low-Resolution Remote Sensing Semantic Segmentation"

2 / 2 papers shown
Title
Real-Time Single Image and Video Super-Resolution Using an Efficient
  Sub-Pixel Convolutional Neural Network
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
Wenzhe Shi
Jose Caballero
Ferenc Huszár
J. Totz
Andrew P. Aitken
Rob Bishop
Daniel Rueckert
Zehan Wang
SupR
190
5,173
0
16 Sep 2016
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image
  Segmentation
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
435
15,631
0
02 Nov 2015
1