ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.08440
  4. Cited By
Synthesize then Compare: Detecting Failures and Anomalies for Semantic
  Segmentation

Synthesize then Compare: Detecting Failures and Anomalies for Semantic Segmentation

18 March 2020
Yingda Xia
Yi Zhang
Fengze Liu
Wei Shen
Alan Yuille
    UQCV
ArXivPDFHTML

Papers citing "Synthesize then Compare: Detecting Failures and Anomalies for Semantic Segmentation"

4 / 4 papers shown
Title
SAM-LAD: Segment Anything Model Meets Zero-Shot Logic Anomaly Detection
SAM-LAD: Segment Anything Model Meets Zero-Shot Logic Anomaly Detection
Yun Peng
Xiao Lin
Nachuan Ma
Jiayuan Du
Chuangwei Liu
Chengju Liu
Qi Chen
101
3
0
17 Feb 2025
Self-Supervised Likelihood Estimation with Energy Guidance for Anomaly Segmentation in Urban Scenes
Self-Supervised Likelihood Estimation with Energy Guidance for Anomaly Segmentation in Urban Scenes
Yuanpeng Tu
Yuxi Li
Boshen Zhang
Liang Liu
Jing Zhang
Yun Wang
C. Zhao
74
3
0
03 Jan 2025
Attention-Guided Perturbation for Unsupervised Image Anomaly Detection
Attention-Guided Perturbation for Unsupervised Image Anomaly Detection
Tingfeng Huang
Yuxuan Cheng
Jingbo Xia
Rui Yu
Yuxuan Cai
Jinhai Xiang
Xinwei He
AAML
86
0
0
14 Aug 2024
A large annotated medical image dataset for the development and
  evaluation of segmentation algorithms
A large annotated medical image dataset for the development and evaluation of segmentation algorithms
Amber L. Simpson
Michela Antonelli
Spyridon Bakas
Michel Bilello
Keyvan Farahani
...
M. McHugo
S. Napel
Eugene Vorontsov
Lena Maier-Hein
M. Jorge Cardoso
47
846
0
25 Feb 2019
1