ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.10399
  4. Cited By
Inherent Adversarial Robustness of Deep Spiking Neural Networks: Effects
  of Discrete Input Encoding and Non-Linear Activations

Inherent Adversarial Robustness of Deep Spiking Neural Networks: Effects of Discrete Input Encoding and Non-Linear Activations

23 March 2020
Saima Sharmin
Nitin Rathi
Priyadarshini Panda
Kaushik Roy
    AAML
ArXivPDFHTML

Papers citing "Inherent Adversarial Robustness of Deep Spiking Neural Networks: Effects of Discrete Input Encoding and Non-Linear Activations"

3 / 3 papers shown
Title
Enabling Deep Spiking Neural Networks with Hybrid Conversion and Spike
  Timing Dependent Backpropagation
Enabling Deep Spiking Neural Networks with Hybrid Conversion and Spike Timing Dependent Backpropagation
Nitin Rathi
G. Srinivasan
Priyadarshini Panda
Kaushik Roy
99
264
0
04 May 2020
Long short-term memory and learning-to-learn in networks of spiking
  neurons
Long short-term memory and learning-to-learn in networks of spiking neurons
G. Bellec
Darjan Salaj
Anand Subramoney
R. Legenstein
Wolfgang Maass
98
438
0
26 Mar 2018
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
216
5,361
0
08 Jul 2016
1