ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.11208
  4. Cited By
Highly Scalable Bayesian Geostatistical Modeling via Meshed Gaussian
  Processes on Partitioned Domains

Highly Scalable Bayesian Geostatistical Modeling via Meshed Gaussian Processes on Partitioned Domains

25 March 2020
M. Peruzzi
Sudipto Banerjee
Andrew O. Finley
ArXivPDFHTML

Papers citing "Highly Scalable Bayesian Geostatistical Modeling via Meshed Gaussian Processes on Partitioned Domains"

5 / 5 papers shown
Title
Bayesian Spatial Predictive Synthesis
Bayesian Spatial Predictive Synthesis
D. Cabel
S. Sugasawa
Masahiro Kato
K. Takanashi
K. McAlinn
91
4
0
28 Jan 2025
Stein's method for marginals on large graphical models
Stein's method for marginals on large graphical models
Tiangang Cui
Shuigen Liu
X. Tong
43
0
0
15 Oct 2024
Modeling Massive Spatial Datasets Using a Conjugate Bayesian Linear
  Regression Framework
Modeling Massive Spatial Datasets Using a Conjugate Bayesian Linear Regression Framework
Sudipto Banerjee
14
13
0
09 Sep 2021
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis
  of Big Data
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis of Big Data
J. Bierkens
Paul Fearnhead
Gareth O. Roberts
45
232
0
11 Jul 2016
Local Gaussian process approximation for large computer experiments
Local Gaussian process approximation for large computer experiments
R. Gramacy
D. Apley
95
391
0
02 Mar 2013
1