Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2003.11241
Cited By
What Deep CNNs Benefit from Global Covariance Pooling: An Optimization Perspective
25 March 2020
Qilong Wang
Li Zhang
Banggu Wu
Dongwei Ren
P. Li
W. Zuo
Q. Hu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"What Deep CNNs Benefit from Global Covariance Pooling: An Optimization Perspective"
6 / 6 papers shown
Title
SoCov: Semi-Orthogonal Parametric Pooling of Covariance Matrix for Speaker Recognition
Rongjin Li
Weibin Zhang
Dongpeng Chen
Jintao Kang
Xiaofen Xing
32
0
0
23 Apr 2025
Conditional Temporal Neural Processes with Covariance Loss
Boseon Yoo
Jiwoo Lee
Janghoon Ju
Seijun Chung
Soyeon Kim
Jaesik Choi
70
15
0
01 Apr 2025
A Systematic Review of Robustness in Deep Learning for Computer Vision: Mind the gap?
Nathan G. Drenkow
Numair Sani
I. Shpitser
Mathias Unberath
19
74
0
01 Dec 2021
Fine-Grained Image Analysis with Deep Learning: A Survey
Xiu-Shen Wei
Yi-Zhe Song
Oisin Mac Aodha
Jianxin Wu
Yuxin Peng
Jinhui Tang
Jian Yang
Serge J. Belongie
71
279
0
11 Nov 2021
Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?
Yue Song
N. Sebe
Wei Wang
17
25
0
06 May 2021
Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding
Akira Fukui
Dong Huk Park
Daylen Yang
Anna Rohrbach
Trevor Darrell
Marcus Rohrbach
152
1,465
0
06 Jun 2016
1