ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.12437
  4. Cited By
Predicting molecular dipole moments by combining atomic partial charges
  and atomic dipoles
v1v2v3 (latest)

Predicting molecular dipole moments by combining atomic partial charges and atomic dipoles

27 March 2020
M. Veit
D. Wilkins
Yang Yang
R. DiStasio
Michele Ceriotti
ArXiv (abs)PDFHTML

Papers citing "Predicting molecular dipole moments by combining atomic partial charges and atomic dipoles"

16 / 16 papers shown
Title
SchNetPack 2.0: A neural network toolbox for atomistic machine learning
SchNetPack 2.0: A neural network toolbox for atomistic machine learning
Kristof T. Schütt
Stefaan S. P. Hessmann
Niklas W. A. Gebauer
Jonas Lederer
M. Gastegger
83
65
0
11 Dec 2022
Synthetic data enable experiments in atomistic machine learning
Synthetic data enable experiments in atomistic machine learning
John L A Gardner
Z. Beaulieu
Volker L. Deringer
70
9
0
29 Nov 2022
Electronic-structure properties from atom-centered predictions of the
  electron density
Electronic-structure properties from atom-centered predictions of the electron density
Andrea Grisafi
Alan M Lewis
M. Rossi
Michele Ceriotti
100
20
0
28 Jun 2022
Efficient and Accurate Physics-aware Multiplex Graph Neural Networks for
  3D Small Molecules and Macromolecule Complexes
Efficient and Accurate Physics-aware Multiplex Graph Neural Networks for 3D Small Molecules and Macromolecule Complexes
Shuo-feng Zhang
Yang Liu
Lei Xie
GNNAI4CE
84
12
0
06 Jun 2022
Molecular Dipole Moment Learning via Rotationally Equivariant Gaussian
  Process Regression with Derivatives in Molecular-orbital-based Machine
  Learning
Molecular Dipole Moment Learning via Rotationally Equivariant Gaussian Process Regression with Derivatives in Molecular-orbital-based Machine Learning
Jiace Sun
Lixue Cheng
Thomas F. Miller
74
3
0
31 May 2022
Predicting hot-electron free energies from ground-state data
Predicting hot-electron free energies from ground-state data
Chiheb Ben Mahmoud
Federico Grasselli
Michele Ceriotti
AI4CE
19
7
0
11 May 2022
Accurate Molecular-Orbital-Based Machine Learning Energies via
  Unsupervised Clustering of Chemical Space
Accurate Molecular-Orbital-Based Machine Learning Energies via Unsupervised Clustering of Chemical Space
Lixue Cheng
Jiace Sun
Thomas F. Miller
48
13
0
21 Apr 2022
Informing Geometric Deep Learning with Electronic Interactions to
  Accelerate Quantum Chemistry
Informing Geometric Deep Learning with Electronic Interactions to Accelerate Quantum Chemistry
Zhuoran Qiao
Anders S. Christensen
Matthew Welborn
F. Manby
Anima Anandkumar
Thomas F. Miller
134
74
0
31 May 2021
Equivariant message passing for the prediction of tensorial properties
  and molecular spectra
Equivariant message passing for the prediction of tensorial properties and molecular spectra
Kristof T. Schütt
Oliver T. Unke
M. Gastegger
118
545
0
05 Feb 2021
Multi-scale approach for the prediction of atomic scale properties
Multi-scale approach for the prediction of atomic scale properties
Andrea Grisafi
Jigyasa Nigam
Michele Ceriotti
41
31
0
27 Aug 2020
Deep Learning for UV Absorption Spectra with SchNarc: First Steps
  Towards Transferability in Chemical Compound Space
Deep Learning for UV Absorption Spectra with SchNarc: First Steps Towards Transferability in Chemical Compound Space
Julia Westermayr
P. Marquetand
88
53
0
15 Jul 2020
Machine learning for electronically excited states of molecules
Machine learning for electronically excited states of molecules
Julia Westermayr
P. Marquetand
71
266
0
10 Jul 2020
Learning the electronic density of states in condensed matter
Learning the electronic density of states in condensed matter
Chiheb Ben Mahmoud
A. Anelli
Gábor Csányi
Michele Ceriotti
42
55
0
21 Jun 2020
Feature Optimization for Atomistic Machine Learning Yields A Data-Driven
  Construction of the Periodic Table of the Elements
Feature Optimization for Atomistic Machine Learning Yields A Data-Driven Construction of the Periodic Table of the Elements
M. J. Willatt
Félix Musil
Michele Ceriotti
40
50
0
30 Jun 2018
Machine Learning Molecular Dynamics for the Simulation of Infrared
  Spectra
Machine Learning Molecular Dynamics for the Simulation of Infrared Spectra
M. Gastegger
J. Behler
P. Marquetand
AI4CE
67
340
0
16 May 2017
Fast and Accurate Modeling of Molecular Atomization Energies with
  Machine Learning
Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
M. Rupp
A. Tkatchenko
K. Müller
O. A. von Lilienfeld
AI4CE
242
1,593
0
12 Sep 2011
1