ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.14348
  4. Cited By
UniformAugment: A Search-free Probabilistic Data Augmentation Approach

UniformAugment: A Search-free Probabilistic Data Augmentation Approach

31 March 2020
Tom Ching LingChen
Ava Khonsari
Amirreza Lashkari
M. Nazari
Jaspreet Singh Sambee
M. Nascimento
ArXivPDFHTML

Papers citing "UniformAugment: A Search-free Probabilistic Data Augmentation Approach"

39 / 39 papers shown
Title
NBBOX: Noisy Bounding Box Improves Remote Sensing Object Detection
NBBOX: Noisy Bounding Box Improves Remote Sensing Object Detection
Yechan Kim
SooYeon Kim
Moongu Jeon
ViT
40
1
0
08 Jan 2025
Training Strategies for Isolated Sign Language Recognition
Training Strategies for Isolated Sign Language Recognition
Karina Kvanchiani
Roman Kraynov
Elizaveta Petrova
Petr Surovcev
Aleksandr Nagaev
A. Kapitanov
76
1
0
16 Dec 2024
FreeAugment: Data Augmentation Search Across All Degrees of Freedom
FreeAugment: Data Augmentation Search Across All Degrees of Freedom
Tom Bekor
Niv Nayman
Lihi Zelnik-Manor
ViT
44
0
0
07 Sep 2024
Optimal Layer Selection for Latent Data Augmentation
Optimal Layer Selection for Latent Data Augmentation
Tomoumi Takase
Ryo Karakida
28
1
0
24 Aug 2024
Your Image is My Video: Reshaping the Receptive Field via Image-To-Video
  Differentiable AutoAugmentation and Fusion
Your Image is My Video: Reshaping the Receptive Field via Image-To-Video Differentiable AutoAugmentation and Fusion
S. Casarin
C. Ugwu
Sergio Escalera
O. Lanz
28
0
0
22 Mar 2024
Automated data processing and feature engineering for deep learning and
  big data applications: a survey
Automated data processing and feature engineering for deep learning and big data applications: a survey
A. Mumuni
F. Mumuni
TPM
38
47
0
18 Mar 2024
Data augmentation with automated machine learning: approaches and performance comparison with classical data augmentation methods
Data augmentation with automated machine learning: approaches and performance comparison with classical data augmentation methods
A. Mumuni
F. Mumuni
60
5
0
13 Mar 2024
SA-Attack: Improving Adversarial Transferability of Vision-Language
  Pre-training Models via Self-Augmentation
SA-Attack: Improving Adversarial Transferability of Vision-Language Pre-training Models via Self-Augmentation
Bangyan He
Xiaojun Jia
Siyuan Liang
Tianrui Lou
Yang Liu
Xiaochun Cao
AAML
VLM
24
23
0
08 Dec 2023
Anchor Data Augmentation
Anchor Data Augmentation
Nora Schneider
Shirin Goshtasbpour
Fernando Pérez-Cruz
16
6
0
12 Nov 2023
DualAug: Exploiting Additional Heavy Augmentation with OOD Data
  Rejection
DualAug: Exploiting Additional Heavy Augmentation with OOD Data Rejection
Zehao Wang
Yiwen Guo
Qizhang Li
Guanglei Yang
Wangmeng Zuo
20
0
0
12 Oct 2023
Domain Generalization by Rejecting Extreme Augmentations
Domain Generalization by Rejecting Extreme Augmentations
Masih Aminbeidokhti
F. Guerrero-Peña
H. R. Medeiros
Thomas Dubail
Eric Granger
M. Pedersoli
ViT
30
3
0
10 Oct 2023
Integrating GAN and Texture Synthesis for Enhanced Road Damage Detection
Integrating GAN and Texture Synthesis for Enhanced Road Damage Detection
Tengyang Chen
Jiangtao Ren
GAN
17
4
0
13 Sep 2023
When to Learn What: Model-Adaptive Data Augmentation Curriculum
When to Learn What: Model-Adaptive Data Augmentation Curriculum
Chengkai Hou
Jieyu Zhang
Tianyi Zhou
27
15
0
09 Sep 2023
On the Efficacy of Multi-scale Data Samplers for Vision Applications
On the Efficacy of Multi-scale Data Samplers for Vision Applications
Elvis Nunez
Thomas Merth
Anish K. Prabhu
Mehrdad Farajtabar
Mohammad Rastegari
Sachin Mehta
Maxwell Horton
23
1
0
08 Sep 2023
MedAugment: Universal Automatic Data Augmentation Plug-in for Medical
  Image Analysis
MedAugment: Universal Automatic Data Augmentation Plug-in for Medical Image Analysis
Zhaoshan Liu
Qiujie Lv
Yifan Li
Ziduo Yang
Leizhao Shen
MedIm
32
13
0
30 Jun 2023
SLACK: Stable Learning of Augmentations with Cold-start and KL
  regularization
SLACK: Stable Learning of Augmentations with Cold-start and KL regularization
Juliette Marrie
Michael Arbel
Diane Larlus
Julien Mairal
OffRL
36
4
0
16 Jun 2023
Learning Better with Less: Effective Augmentation for Sample-Efficient
  Visual Reinforcement Learning
Learning Better with Less: Effective Augmentation for Sample-Efficient Visual Reinforcement Learning
Guozheng Ma
Linrui Zhang
Haoyu Wang
Lu Li
Zilin Wang
Zhen Wang
Li Shen
Xueqian Wang
Dacheng Tao
42
10
0
25 May 2023
Dynamic Data Augmentation via MCTS for Prostate MRI Segmentation
Dynamic Data Augmentation via MCTS for Prostate MRI Segmentation
Xin-Chao Xu
Yu-Tseng Hsi
Hong Wang
X. Li
19
0
0
25 May 2023
Stimulative Training++: Go Beyond The Performance Limits of Residual
  Networks
Stimulative Training++: Go Beyond The Performance Limits of Residual Networks
XinYu Piao
Tong He
DoangJoo Synn
Baopu Li
Tao Chen
Lei Bai
Jong-Kook Kim
44
4
0
04 May 2023
ODIN: On-demand Data Formulation to Mitigate Dataset Lock-in
ODIN: On-demand Data Formulation to Mitigate Dataset Lock-in
SP Choi
Jihun Lee
HyeongSeok Ahn
Sanghee Jung
Bumsoo Kang
VLM
16
0
0
13 Mar 2023
RangeAugment: Efficient Online Augmentation with Range Learning
RangeAugment: Efficient Online Augmentation with Range Learning
Sachin Mehta
Saeid Naderiparizi
Fartash Faghri
Maxwell Horton
Lailin Chen
Ali Farhadi
Oncel Tuzel
Mohammad Rastegari
21
6
0
20 Dec 2022
Automatic Data Augmentation via Invariance-Constrained Learning
Automatic Data Augmentation via Invariance-Constrained Learning
Ignacio Hounie
Luiz F. O. Chamon
Alejandro Ribeiro
23
10
0
29 Sep 2022
Universal Adaptive Data Augmentation
Universal Adaptive Data Augmentation
Xiaogang Xu
Hengshuang Zhao
14
5
0
14 Jul 2022
Augment like there's no tomorrow: Consistently performing neural
  networks for medical imaging
Augment like there's no tomorrow: Consistently performing neural networks for medical imaging
J. Pohjonen
Carolin Sturenberg
Atte Fohr
Reija Randén-Brady
L. Luomala
J. Lohi
Esa Pitkanen
A. Rannikko
T. Mirtti
OOD
19
3
0
30 Jun 2022
Exploring Temporally Dynamic Data Augmentation for Video Recognition
Exploring Temporally Dynamic Data Augmentation for Video Recognition
Taeoh Kim
Jinhyung Kim
Minho Shim
Sangdoo Yun
Myunggu Kang
Dongyoon Wee
Sangyoun Lee
AI4TS
15
10
0
30 Jun 2022
A Survey of Automated Data Augmentation Algorithms for Deep
  Learning-based Image Classification Tasks
A Survey of Automated Data Augmentation Algorithms for Deep Learning-based Image Classification Tasks
Z. Yang
Richard Sinnott
James Bailey
Qiuhong Ke
16
39
0
14 Jun 2022
DeiT III: Revenge of the ViT
DeiT III: Revenge of the ViT
Hugo Touvron
Matthieu Cord
Hervé Jégou
ViT
39
388
0
14 Apr 2022
Deep AutoAugment
Deep AutoAugment
Yu Zheng
Z. Zhang
Shen Yan
Mi Zhang
ViT
13
26
0
11 Mar 2022
TeachAugment: Data Augmentation Optimization Using Teacher Knowledge
TeachAugment: Data Augmentation Optimization Using Teacher Knowledge
Teppei Suzuki
ViT
13
48
0
25 Feb 2022
Improving the Behaviour of Vision Transformers with Token-consistent
  Stochastic Layers
Improving the Behaviour of Vision Transformers with Token-consistent Stochastic Layers
Nikola Popovic
D. Paudel
Thomas Probst
Luc Van Gool
31
1
0
30 Dec 2021
Directional Self-supervised Learning for Heavy Image Augmentations
Directional Self-supervised Learning for Heavy Image Augmentations
Yalong Bai
Yifan Yang
Wei Zhang
Tao Mei
18
20
0
26 Oct 2021
Man versus Machine: AutoML and Human Experts' Role in Phishing Detection
Man versus Machine: AutoML and Human Experts' Role in Phishing Detection
R. Purwanto
Arindam Pal
Alan Blair
S. Jha
21
1
0
27 Aug 2021
Spectral decoupling allows training transferable neural networks in
  medical imaging
Spectral decoupling allows training transferable neural networks in medical imaging
J. Pohjonen
Carolin Sturenberg
Antti Rannikkoy
T. Mirtti
Esa Pitkanen
OOD
16
10
0
31 Mar 2021
TrivialAugment: Tuning-free Yet State-of-the-Art Data Augmentation
TrivialAugment: Tuning-free Yet State-of-the-Art Data Augmentation
Samuel G. Müller
Frank Hutter
ViT
MQ
16
274
0
18 Mar 2021
AutoDO: Robust AutoAugment for Biased Data with Label Noise via Scalable
  Probabilistic Implicit Differentiation
AutoDO: Robust AutoAugment for Biased Data with Label Noise via Scalable Probabilistic Implicit Differentiation
Denis A. Gudovskiy
Luca Rigazio
Shun Ishizaka
Kazuki Kozuka
Sotaro Tsukizawa
NoLa
22
21
0
10 Mar 2021
In-Loop Meta-Learning with Gradient-Alignment Reward
In-Loop Meta-Learning with Gradient-Alignment Reward
Samuel G. Müller
André Biedenkapp
Frank Hutter
OOD
15
2
0
05 Feb 2021
TUTOR: Training Neural Networks Using Decision Rules as Model Priors
TUTOR: Training Neural Networks Using Decision Rules as Model Priors
Shayan Hassantabar
Prerit Terway
N. Jha
25
10
0
12 Oct 2020
AutoML: A Survey of the State-of-the-Art
AutoML: A Survey of the State-of-the-Art
Xin He
Kaiyong Zhao
X. Chu
17
1,418
0
02 Aug 2019
Neural Architecture Search with Reinforcement Learning
Neural Architecture Search with Reinforcement Learning
Barret Zoph
Quoc V. Le
264
5,326
0
05 Nov 2016
1