Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2003.14358
Cited By
Controlling Rayleigh-Bénard convection via Reinforcement Learning
31 March 2020
Gerben Beintema
Alessandro Corbetta
Luca Biferale
F. Toschi
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Controlling Rayleigh-Bénard convection via Reinforcement Learning"
19 / 19 papers shown
Title
Control of Rayleigh-Bénard Convection: Effectiveness of Reinforcement Learning in the Turbulent Regime
Thorben Markmann
Michiel Straat
Sebastian Peitz
Barbara Hammer
AI4CE
38
0
0
16 Apr 2025
Multi-agent reinforcement learning for the control of three-dimensional Rayleigh-Bénard convection
Mirko Conrad
Jean Rabault
Francisco Alcántara-Ávila
Mikael Mortensen
Ricardo Vinuesa
AI4CE
35
3
0
31 Jul 2024
Koopman-Based Surrogate Modelling of Turbulent Rayleigh-Bénard Convection
Thorben Markmann
Michiel Straat
Barbara Hammer
AI4CE
30
3
0
10 May 2024
Parametric PDE Control with Deep Reinforcement Learning and Differentiable L0-Sparse Polynomial Policies
N. Botteghi
Urban Fasel
AI4CE
49
6
0
22 Mar 2024
Optimal Parallelization Strategies for Active Flow Control in Deep Reinforcement Learning-Based Computational Fluid Dynamics
Wang Jia
Hang Xu
AI4CE
40
4
0
18 Feb 2024
Asynchronous Parallel Reinforcement Learning for Optimizing Propulsive Performance in Fin Ray Control
Xin-Yang Liu
Dariush Bodaghi
Q. Xue
Xudong Zheng
Jian-Xun Wang
33
0
0
21 Jan 2024
Genetically-inspired convective heat transfer enhancement in a turbulent boundary layer
R. Castellanos
A. Ianiro
S. Discetti
AI4CE
20
2
0
25 Apr 2023
Parallel bootstrap-based on-policy deep reinforcement learning for continuous flow control applications
J. Viquerat
E. Hachem
16
2
0
24 Apr 2023
Effective control of two-dimensional Rayleigh--Bénard convection: invariant multi-agent reinforcement learning is all you need
Colin Vignon
Jean Rabault
Joel Vasanth
Francisco Alcántara-Ávila
M. Mortensen
Ricardo Vinuesa
AI4CE
23
39
0
05 Apr 2023
Data-driven control of spatiotemporal chaos with reduced-order neural ODE-based models and reinforcement learning
Kevin Zeng
Alec J. Linot
M. Graham
AI4CE
20
28
0
01 May 2022
Comparative analysis of machine learning methods for active flow control
F. Pino
Lorenzo Schena
Jean Rabault
M. A. Mendez
26
43
0
23 Feb 2022
Multi-fidelity reinforcement learning framework for shape optimization
Sahil Bhola
Suraj Pawar
Prasanna Balaprakash
R. Maulik
AI4CE
11
20
0
22 Feb 2022
Physics-informed Dyna-Style Model-Based Deep Reinforcement Learning for Dynamic Control
Xin-Yang Liu
Jian-Xun Wang
AI4CE
23
38
0
31 Jul 2021
Hybrid analysis and modeling, eclecticism, and multifidelity computing toward digital twin revolution
Omer San
Adil Rasheed
T. Kvamsdal
48
50
0
26 Mar 2021
Thermal Control of Laser Powder Bed Fusion Using Deep Reinforcement Learning
Francis Ogoke
A. Farimani
AI4CE
11
70
0
29 Jan 2021
Using machine-learning modelling to understand macroscopic dynamics in a system of coupled maps
Francesco Borra
Marco Baldovin
AI4CE
17
2
0
08 Nov 2020
Deep Neural Networks for Nonlinear Model Order Reduction of Unsteady Flows
Hamidreza Eivazi
H. Veisi
M. H. Naderi
V. Esfahanian
AI4CE
23
167
0
02 Jul 2020
A review on Deep Reinforcement Learning for Fluid Mechanics
Paul Garnier
J. Viquerat
Jean Rabault
A. Larcher
A. Kuhnle
E. Hachem
AI4CE
16
253
0
12 Aug 2019
Flow Navigation by Smart Microswimmers via Reinforcement Learning
S. Colabrese
K. Gustavsson
A. Celani
Luca Biferale
31
156
0
30 Jan 2017
1