ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.02583
  4. Cited By
Efficient Alternating Least Squares Algorithms for Low Multilinear Rank
  Approximation of Tensors
v1v2v3v4 (latest)

Efficient Alternating Least Squares Algorithms for Low Multilinear Rank Approximation of Tensors

6 April 2020
Chuanfu Xiao
Chao Yang
Min Li
ArXiv (abs)PDFHTML

Papers citing "Efficient Alternating Least Squares Algorithms for Low Multilinear Rank Approximation of Tensors"

1 / 1 papers shown
Title
a-Tucker: Input-Adaptive and Matricization-Free Tucker Decomposition for
  Dense Tensors on CPUs and GPUs
a-Tucker: Input-Adaptive and Matricization-Free Tucker Decomposition for Dense Tensors on CPUs and GPUs
Min Li
Chuanfu Xiao
Chao Yang
17
3
0
20 Oct 2020
1