Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2004.02658
Cited By
Geometrically Principled Connections in Graph Neural Networks
6 April 2020
Shunwang Gong
Mehdi Bahri
M. Bronstein
S. Zafeiriou
GNN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Geometrically Principled Connections in Graph Neural Networks"
8 / 8 papers shown
Title
You Can Have Better Graph Neural Networks by Not Training Weights at All: Finding Untrained GNNs Tickets
Tianjin Huang
Tianlong Chen
Meng Fang
Vlado Menkovski
Jiaxu Zhao
...
Yulong Pei
D. Mocanu
Zhangyang Wang
Mykola Pechenizkiy
Shiwei Liu
GNN
34
14
0
28 Nov 2022
On Provable Benefits of Depth in Training Graph Convolutional Networks
Weilin Cong
M. Ramezani
M. Mahdavi
19
73
0
28 Oct 2021
Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study
Tianlong Chen
Kaixiong Zhou
Keyu Duan
Wenqing Zheng
Peihao Wang
Xia Hu
Zhangyang Wang
AAML
GNN
19
61
0
24 Aug 2021
Training Graph Neural Networks with 1000 Layers
Guohao Li
Matthias Muller
Bernard Ghanem
V. Koltun
GNN
AI4CE
34
235
0
14 Jun 2021
Shape My Face: Registering 3D Face Scans by Surface-to-Surface Translation
Mehdi Bahri
Eimear O' Sullivan
Shunwang Gong
Feng Liu
Xiaoming Liu
M. Bronstein
S. Zafeiriou
CVBM
3DH
15
16
0
16 Dec 2020
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
229
1,941
0
09 Jun 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,811
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
236
3,234
0
24 Nov 2016
1