Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2004.04276
Cited By
nPINNs: nonlocal Physics-Informed Neural Networks for a parametrized nonlocal universal Laplacian operator. Algorithms and Applications
8 April 2020
G. Pang
M. DÉlia
M. Parks
George Karniadakis
PINN
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"nPINNs: nonlocal Physics-Informed Neural Networks for a parametrized nonlocal universal Laplacian operator. Algorithms and Applications"
33 / 33 papers shown
Title
Node Assigned physics-informed neural networks for thermal-hydraulic system simulation: CVH/FL module
Jeesuk Shin
Cheolwoong Kim
Sunwoong Yang
Minseo Lee
S. J. Kim
J. Jeon
74
0
0
23 Apr 2025
RL-PINNs: Reinforcement Learning-Driven Adaptive Sampling for Efficient Training of PINNs
Zhenao Song
111
0
0
17 Apr 2025
UGrid: An Efficient-And-Rigorous Neural Multigrid Solver for Linear PDEs
Xi Han
Fei Hou
Hong Qin
AI4CE
65
2
0
09 Aug 2024
Separable Physics-Informed Neural Networks for the solution of elasticity problems
V. A. Es'kin
Danil V. Davydov
Julia V. Guréva
Alexey O. Malkhanov
Mikhail E. Smorkalov
PINN
AI4CE
81
3
0
24 Jan 2024
Approximation of Solution Operators for High-dimensional PDEs
Nathan Gaby
Xiaojing Ye
73
0
0
18 Jan 2024
Learning About Structural Errors in Models of Complex Dynamical Systems
Jin-Long Wu
Matthew E. Levine
Tapio Schneider
Andrew M. Stuart
AI4CE
82
18
0
29 Dec 2023
Physics-aware Machine Learning Revolutionizes Scientific Paradigm for Machine Learning and Process-based Hydrology
Qingsong Xu
Yilei Shi
Jonathan Bamber
Ye Tuo
Ralf Ludwig
Xiao Xiang Zhu
AI4CE
133
10
0
08 Oct 2023
PMNN:Physical Model-driven Neural Network for solving time-fractional differential equations
Zhiying Ma
Jie Hou
Wenhao Zhu
Yaxin Peng
Ying Li
103
13
0
07 Oct 2023
Approximating High-Dimensional Minimal Surfaces with Physics-Informed Neural Networks
Steven Zhou
Xiaojing Ye
PINN
52
0
0
05 Sep 2023
Reconstructing
S
S
S
-matrix Phases with Machine Learning
Aurélien Dersy
M. Schwartz
A. Zhiboedov
40
5
0
18 Aug 2023
Branched Latent Neural Maps
M. Salvador
Alison Lesley Marsden
90
4
0
04 Aug 2023
NUNO: A General Framework for Learning Parametric PDEs with Non-Uniform Data
Songming Liu
Zhongkai Hao
Chengyang Ying
Hang Su
Ze Cheng
Jun Zhu
AI4CE
65
12
0
30 May 2023
About optimal loss function for training physics-informed neural networks under respecting causality
V. A. Es'kin
Danil V. Davydov
Ekaterina D. Egorova
Alexey O. Malkhanov
Mikhail A. Akhukov
Mikhail E. Smorkalov
PINN
93
7
0
05 Apr 2023
Neural Control of Parametric Solutions for High-dimensional Evolution PDEs
Nathan Gaby
X. Ye
Haomin Zhou
64
6
0
31 Jan 2023
MC-Nonlocal-PINNs: handling nonlocal operators in PINNs via Monte Carlo sampling
Xiaodong Feng
Yue Qian
W. Shen
57
3
0
26 Dec 2022
Physics-Informed Machine Learning: A Survey on Problems, Methods and Applications
Zhongkai Hao
Songming Liu
Yichi Zhang
Chengyang Ying
Yao Feng
Hang Su
Jun Zhu
PINN
AI4CE
123
98
0
15 Nov 2022
An unsupervised latent/output physics-informed convolutional-LSTM network for solving partial differential equations using peridynamic differential operator
A. Mavi
A. Bekar
E. Haghighat
E. Madenci
84
28
0
21 Oct 2022
AutoKE: An automatic knowledge embedding framework for scientific machine learning
Mengge Du
Yuntian Chen
Dongxiao Zhang
AI4CE
75
11
0
11 May 2022
Monte Carlo PINNs: deep learning approach for forward and inverse problems involving high dimensional fractional partial differential equations
Ling Guo
Hao Wu
Xiao-Jun Yu
Tao Zhou
PINN
AI4CE
64
63
0
16 Mar 2022
State-of-the-Art Review of Design of Experiments for Physics-Informed Deep Learning
Sourav Das
S. Tesfamariam
PINN
AI4CE
79
20
0
13 Feb 2022
Deep neural networks for smooth approximation of physics with higher order and continuity B-spline base functions
Kamil Doleglo
Anna Paszyñska
Maciej Paszyñski
L. Demkowicz
19
5
0
03 Jan 2022
An extended physics informed neural network for preliminary analysis of parametric optimal control problems
N. Demo
M. Strazzullo
G. Rozza
PINN
66
36
0
26 Oct 2021
A Metalearning Approach for Physics-Informed Neural Networks (PINNs): Application to Parameterized PDEs
Michael Penwarden
Shandian Zhe
A. Narayan
Robert M. Kirby
PINN
AI4CE
105
45
0
26 Oct 2021
A data-driven peridynamic continuum model for upscaling molecular dynamics
Huaiqian You
Yue Yu
Stewart Silling
M. DÉlia
AI4CE
68
46
0
04 Aug 2021
DySMHO: Data-Driven Discovery of Governing Equations for Dynamical Systems via Moving Horizon Optimization
F. Lejarza
M. Baldea
AI4CE
79
39
0
30 Jul 2021
Meta-learning PINN loss functions
Apostolos F. Psaros
Kenji Kawaguchi
George Karniadakis
PINN
95
106
0
12 Jul 2021
Multifidelity Modeling for Physics-Informed Neural Networks (PINNs)
Michael Penwarden
Shandian Zhe
A. Narayan
Robert M. Kirby
99
46
0
25 Jun 2021
An overview on deep learning-based approximation methods for partial differential equations
C. Beck
Martin Hutzenthaler
Arnulf Jentzen
Benno Kuckuck
117
153
0
22 Dec 2020
Data-driven learning of nonlocal models: from high-fidelity simulations to constitutive laws
Huaiqian You
Yue Yu
Stewart Silling
M. DÉlia
95
32
0
08 Dec 2020
Graph Convolutional Neural Networks for Body Force Prediction
Francis Ogoke
Kazem Meidani
Amirreza Hashemi
A. Farimani
GNN
AI4CE
41
62
0
03 Dec 2020
Solving Inverse Stochastic Problems from Discrete Particle Observations Using the Fokker-Planck Equation and Physics-informed Neural Networks
Xiaoli Chen
Liu Yang
Jinqiao Duan
George Karniadakis
94
83
0
24 Aug 2020
When and why PINNs fail to train: A neural tangent kernel perspective
Sizhuang He
Xinling Yu
P. Perdikaris
143
928
0
28 Jul 2020
Data-driven learning of robust nonlocal physics from high-fidelity synthetic data
Huaiqian You
Yue Yu
Nathaniel Trask
Mamikon A. Gulian
M. DÉlia
56
35
0
17 May 2020
1