ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.06263
  4. Cited By
Coresets for Clustering in Euclidean Spaces: Importance Sampling is
  Nearly Optimal

Coresets for Clustering in Euclidean Spaces: Importance Sampling is Nearly Optimal

14 April 2020
Lingxiao Huang
Nisheeth K. Vishnoi
ArXivPDFHTML

Papers citing "Coresets for Clustering in Euclidean Spaces: Importance Sampling is Nearly Optimal"

6 / 6 papers shown
Title
No Dimensional Sampling Coresets for Classification
No Dimensional Sampling Coresets for Classification
M. Alishahi
Jeff M. Phillips
39
1
0
07 Feb 2024
Parameterized Approximation Schemes for Clustering with General Norm
  Objectives
Parameterized Approximation Schemes for Clustering with General Norm Objectives
F. Abbasi
Sandip Banerjee
J. Byrka
Parinya Chalermsook
Ameet Gadekar
K. Khodamoradi
D. Marx
Roohani Sharma
J. Spoerhase
23
12
0
06 Apr 2023
Provable Data Subset Selection For Efficient Neural Network Training
Provable Data Subset Selection For Efficient Neural Network Training
M. Tukan
Samson Zhou
Alaa Maalouf
Daniela Rus
Vladimir Braverman
Dan Feldman
MLT
25
9
0
09 Mar 2023
Coresets for Vertical Federated Learning: Regularized Linear Regression
  and $K$-Means Clustering
Coresets for Vertical Federated Learning: Regularized Linear Regression and KKK-Means Clustering
Lingxiao Huang
Zhize Li
Jialin Sun
Haoyu Zhao
FedML
41
9
0
26 Oct 2022
Efficient NTK using Dimensionality Reduction
Efficient NTK using Dimensionality Reduction
Nir Ailon
Supratim Shit
26
0
0
10 Oct 2022
Adversarial Robustness of Streaming Algorithms through Importance
  Sampling
Adversarial Robustness of Streaming Algorithms through Importance Sampling
Vladimir Braverman
Avinatan Hassidim
Yossi Matias
Mariano Schain
Sandeep Silwal
Samson Zhou
AAML
OOD
24
38
0
28 Jun 2021
1