ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.08297
  4. Cited By
Towards data-driven stroke rehabilitation via wearable sensors and deep
  learning
v1v2v3 (latest)

Towards data-driven stroke rehabilitation via wearable sensors and deep learning

14 April 2020
Aakash Kaku
A. Parnandi
Anita Venkatesan
Natasha Pandit
Heidi M. Schambra
C. Fernandez‐Granda
ArXiv (abs)PDFHTML

Papers citing "Towards data-driven stroke rehabilitation via wearable sensors and deep learning"

2 / 2 papers shown
Title
PrimSeq: a deep learning-based pipeline to quantitate rehabilitation
  training
PrimSeq: a deep learning-based pipeline to quantitate rehabilitation training
A. Parnandi
Aakash Kaku
Anita Venkatesan
Natasha Pandit
Audre Wirtanen
H. Rajamohan
Kannan Venkataramanan
Dawn M. Nilsen
C. Fernandez‐Granda
Heidi M. Schambra
32
11
0
21 Dec 2021
Sequence-to-Sequence Modeling for Action Identification at High Temporal
  Resolution
Sequence-to-Sequence Modeling for Action Identification at High Temporal Resolution
Aakash Kaku
Kangning Liu
A. Parnandi
H. Rajamohan
Kannan Venkataramanan
Anita Venkatesan
Audre Wirtanen
Natasha Pandit
Heidi M. Schambra
C. Fernandez‐Granda
35
5
0
03 Nov 2021
1