ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.08996
  4. Cited By
Local Search is a Remarkably Strong Baseline for Neural Architecture
  Search

Local Search is a Remarkably Strong Baseline for Neural Architecture Search

20 April 2020
T. D. Ottelander
A. Dushatskiy
M. Virgolin
Peter A. N. Bosman
    OOD
ArXivPDFHTML

Papers citing "Local Search is a Remarkably Strong Baseline for Neural Architecture Search"

5 / 5 papers shown
Title
CSCO: Connectivity Search of Convolutional Operators
CSCO: Connectivity Search of Convolutional Operators
Tunhou Zhang
Shiyu Li
Hsin-Pai Cheng
Feng Yan
Hai Helen Li
Yiran Chen
31
0
0
26 Apr 2024
Mixed-Block Neural Architecture Search for Medical Image Segmentation
Mixed-Block Neural Architecture Search for Medical Image Segmentation
Martijn M.A. Bosma
A. Dushatskiy
Monika Grewal
T. Alderliesten
Peter A. N. Bosman
SSeg
12
8
0
23 Feb 2022
CATE: Computation-aware Neural Architecture Encoding with Transformers
CATE: Computation-aware Neural Architecture Encoding with Transformers
Shen Yan
Kaiqiang Song
Z. Feng
Mi Zhang
20
24
0
14 Feb 2021
Pitfalls in Machine Learning Research: Reexamining the Development Cycle
Pitfalls in Machine Learning Research: Reexamining the Development Cycle
Stella Biderman
Walter J. Scheirer
13
26
0
04 Nov 2020
Efficient Multi-objective Neural Architecture Search via Lamarckian
  Evolution
Efficient Multi-objective Neural Architecture Search via Lamarckian Evolution
T. Elsken
J. H. Metzen
Frank Hutter
117
498
0
24 Apr 2018
1