ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.09481
  4. Cited By
Connecting Robust Shuffle Privacy and Pan-Privacy

Connecting Robust Shuffle Privacy and Pan-Privacy

20 April 2020
Victor Balcer
Albert Cheu
Matthew Joseph
Jieming Mao
    FedML
ArXivPDFHTML

Papers citing "Connecting Robust Shuffle Privacy and Pan-Privacy"

14 / 14 papers shown
Title
Learning from End User Data with Shuffled Differential Privacy over Kernel Densities
Learning from End User Data with Shuffled Differential Privacy over Kernel Densities
Tal Wagner
FedML
48
0
0
21 Feb 2025
Amplification by Shuffling without Shuffling
Amplification by Shuffling without Shuffling
Borja Balle
James Bell
Adria Gascon
FedML
32
2
0
18 May 2023
Privacy Amplification via Shuffling: Unified, Simplified, and Tightened
Privacy Amplification via Shuffling: Unified, Simplified, and Tightened
Shaowei Wang
FedML
20
9
0
11 Apr 2023
Algorithms with More Granular Differential Privacy Guarantees
Algorithms with More Granular Differential Privacy Guarantees
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
Thomas Steinke
52
6
0
08 Sep 2022
Pure Differential Privacy from Secure Intermediaries
Pure Differential Privacy from Secure Intermediaries
Albert Cheu
Chao Yan
FedML
12
9
0
19 Dec 2021
Tight Bounds for Differentially Private Anonymized Histograms
Tight Bounds for Differentially Private Anonymized Histograms
Pasin Manurangsi
PICV
17
6
0
05 Nov 2021
Differentially Private Aggregation in the Shuffle Model: Almost Central
  Accuracy in Almost a Single Message
Differentially Private Aggregation in the Shuffle Model: Almost Central Accuracy in Almost a Single Message
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
Rasmus Pagh
Amer Sinha
FedML
57
36
0
27 Sep 2021
Shuffle Private Stochastic Convex Optimization
Shuffle Private Stochastic Convex Optimization
Albert Cheu
Matthew Joseph
Jieming Mao
Binghui Peng
FedML
13
25
0
17 Jun 2021
Private Counting from Anonymous Messages: Near-Optimal Accuracy with
  Vanishing Communication Overhead
Private Counting from Anonymous Messages: Near-Optimal Accuracy with Vanishing Communication Overhead
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
Rasmus Pagh
FedML
24
48
0
08 Jun 2021
The Distributed Discrete Gaussian Mechanism for Federated Learning with
  Secure Aggregation
The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation
Peter Kairouz
Ziyu Liu
Thomas Steinke
FedML
16
232
0
12 Feb 2021
Privacy Amplification by Decentralization
Privacy Amplification by Decentralization
Edwige Cyffers
A. Bellet
FedML
42
39
0
09 Dec 2020
On Distributed Differential Privacy and Counting Distinct Elements
On Distributed Differential Privacy and Counting Distinct Elements
Lijie Chen
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
FedML
13
29
0
21 Sep 2020
Amplification by Shuffling: From Local to Central Differential Privacy
  via Anonymity
Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Kunal Talwar
Abhradeep Thakurta
136
420
0
29 Nov 2018
Prochlo: Strong Privacy for Analytics in the Crowd
Prochlo: Strong Privacy for Analytics in the Crowd
Andrea Bittau
Ulfar Erlingsson
Petros Maniatis
Ilya Mironov
A. Raghunathan
David Lie
Mitch Rudominer
Ushasree Kode
J. Tinnés
B. Seefeld
83
278
0
02 Oct 2017
1