Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2004.09677
Cited By
Approximate exploitability: Learning a best response in large games
20 April 2020
Finbarr Timbers
Nolan Bard
Edward Lockhart
Marc Lanctot
Martin Schmid
Neil Burch
Julian Schrittwieser
Thomas Hubert
Michael Bowling
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Approximate exploitability: Learning a best response in large games"
5 / 5 papers shown
Title
Solving Infinite-Player Games with Player-to-Strategy Networks
Carlos Martin
T. Sandholm
54
0
0
17 Jan 2025
The Adaptive Arms Race: Redefining Robustness in AI Security
Ilias Tsingenopoulos
Vera Rimmer
Davy Preuveneers
Fabio Pierazzi
Lorenzo Cavallaro
Wouter Joosen
AAML
72
0
0
20 Dec 2023
JiangJun: Mastering Xiangqi by Tackling Non-Transitivity in Two-Player Zero-Sum Games
Yang Li
Kun Xiong
Yingping Zhang
Jiangcheng Zhu
Stephen Marcus McAleer
Wei Pan
Jun Wang
Zonghong Dai
Yaodong Yang
39
2
0
09 Aug 2023
Finding mixed-strategy equilibria of continuous-action games without gradients using randomized policy networks
Carlos Martin
T. Sandholm
28
11
0
29 Nov 2022
Last-Iterate Convergence with Full and Noisy Feedback in Two-Player Zero-Sum Games
Kenshi Abe
Kaito Ariu
Mitsuki Sakamoto
Kenta Toyoshima
Atsushi Iwasaki
34
11
0
21 Aug 2022
1