ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.10536
  4. Cited By
Learning Sampling and Model-Based Signal Recovery for Compressed Sensing
  MRI

Learning Sampling and Model-Based Signal Recovery for Compressed Sensing MRI

22 April 2020
Iris A. M. Huijben
Bastiaan S. Veeling
Ruud J. G. van Sloun
ArXiv (abs)PDFHTML

Papers citing "Learning Sampling and Model-Based Signal Recovery for Compressed Sensing MRI"

7 / 7 papers shown
Title
PUERT: Probabilistic Under-sampling and Explicable Reconstruction
  Network for CS-MRI
PUERT: Probabilistic Under-sampling and Explicable Reconstruction Network for CS-MRI
Jingfen Xie
Jian Zhang
Yongbing Zhang
Xiangyang Ji
76
31
0
24 Apr 2022
On learning adaptive acquisition policies for undersampled multi-coil
  MRI reconstruction
On learning adaptive acquisition policies for undersampled multi-coil MRI reconstruction
Timothy C. Bakker
Matthew Muckley
Adriana Romero Soriano
M. Drozdzal
Luis Villaseñor-Pineda
76
18
0
30 Mar 2022
Gradient-Based Learning of Discrete Structured Measurement Operators for
  Signal Recovery
Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery
Jonathan Sauder
Martin Genzel
P. Jung
69
1
0
07 Feb 2022
Single-pass Object-adaptive Data Undersampling and Reconstruction for
  MRI
Single-pass Object-adaptive Data Undersampling and Reconstruction for MRI
Zhishen Huang
S. Ravishankar
MedIm
80
10
0
17 Nov 2021
A Review of the Gumbel-max Trick and its Extensions for Discrete
  Stochasticity in Machine Learning
A Review of the Gumbel-max Trick and its Extensions for Discrete Stochasticity in Machine Learning
Iris A. M. Huijben
W. Kool
Max B. Paulus
Ruud J. G. van Sloun
113
99
0
04 Oct 2021
Dynamic Probabilistic Pruning: A general framework for
  hardware-constrained pruning at different granularities
Dynamic Probabilistic Pruning: A general framework for hardware-constrained pruning at different granularities
L. Gonzalez-Carabarin
Iris A. M. Huijben
Bastian Veeling
A. Schmid
Ruud J. G. van Sloun
57
11
0
26 May 2021
Experimental design for MRI by greedy policy search
Experimental design for MRI by greedy policy search
Tim Bakker
H. V. Hoof
Max Welling
61
59
0
30 Oct 2020
1