ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.10823
21
5

Utterance-level Sequential Modeling For Deep Gaussian Process Based Speech Synthesis Using Simple Recurrent Unit

22 April 2020
Tomoki Koriyama
Hiroshi Saruwatari
    BDL
ArXivPDFHTML
Abstract

This paper presents a deep Gaussian process (DGP) model with a recurrent architecture for speech sequence modeling. DGP is a Bayesian deep model that can be trained effectively with the consideration of model complexity and is a kernel regression model that can have high expressibility. In the previous studies, it was shown that the DGP-based speech synthesis outperformed neural network-based one, in which both models used a feed-forward architecture. To improve the naturalness of synthetic speech, in this paper, we show that DGP can be applied to utterance-level modeling using recurrent architecture models. We adopt a simple recurrent unit (SRU) for the proposed model to achieve a recurrent architecture, in which we can execute fast speech parameter generation by using the high parallelization nature of SRU. The objective and subjective evaluation results show that the proposed SRU-DGP-based speech synthesis outperforms not only feed-forward DGP but also automatically tuned SRU- and long short-term memory (LSTM)-based neural networks.

View on arXiv
Comments on this paper