ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.11094
  4. Cited By
Consistent Online Gaussian Process Regression Without the Sample
  Complexity Bottleneck
v1v2 (latest)

Consistent Online Gaussian Process Regression Without the Sample Complexity Bottleneck

23 April 2020
Alec Koppel
Hrusikesha Pradhan
K. Rajawat
ArXiv (abs)PDFHTML

Papers citing "Consistent Online Gaussian Process Regression Without the Sample Complexity Bottleneck"

8 / 8 papers shown
Title
Formulation Graphs for Mapping Structure-Composition of Battery
  Electrolytes to Device Performance
Formulation Graphs for Mapping Structure-Composition of Battery Electrolytes to Device Performance
Vidushi Sharma
Maxwell J. Giammona
Dmitry Zubarev
Andy Tek
Khanh Nugyuen
Linda Sundberg
D. Congiu
Young-Hye La
63
12
0
07 Jul 2023
Posterior Coreset Construction with Kernelized Stein Discrepancy for
  Model-Based Reinforcement Learning
Posterior Coreset Construction with Kernelized Stein Discrepancy for Model-Based Reinforcement Learning
Souradip Chakraborty
Amrit Singh Bedi
Alec Koppel
Brian M. Sadler
Furong Huang
Pratap Tokekar
Tianyi Zhou
73
10
0
02 Jun 2022
High-dimensional additive Gaussian processes under monotonicity
  constraints
High-dimensional additive Gaussian processes under monotonicity constraints
A. F. López-Lopera
François Bachoc
O. Roustant
73
9
0
17 May 2022
Online, Informative MCMC Thinning with Kernelized Stein Discrepancy
Online, Informative MCMC Thinning with Kernelized Stein Discrepancy
Cole Hawkins
Alec Koppel
Zheng Zhang
66
4
0
18 Jan 2022
Distributed Gaussian Process Mapping for Robot Teams with Time-varying
  Communication
Distributed Gaussian Process Mapping for Robot Teams with Time-varying Communication
James Di
Ehsan Zobeidi
Alec Koppel
Nikolay Atanasov
45
3
0
12 Oct 2021
Wasserstein-Splitting Gaussian Process Regression for Heterogeneous
  Online Bayesian Inference
Wasserstein-Splitting Gaussian Process Regression for Heterogeneous Online Bayesian Inference
Michael E. Kepler
Alec Koppel
Amrit Singh Bedi
D. Stilwell
31
3
0
26 Jul 2021
Kernel Interpolation for Scalable Online Gaussian Processes
Kernel Interpolation for Scalable Online Gaussian Processes
Samuel Stanton
Wesley J. Maddox
Ian A. Delbridge
A. Wilson
GP
59
30
0
02 Mar 2021
Decision-Making Algorithms for Learning and Adaptation with Application
  to COVID-19 Data
Decision-Making Algorithms for Learning and Adaptation with Application to COVID-19 Data
S. Maranò
Ali H. Sayed
49
6
0
14 Dec 2020
1