ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.11170
  4. Cited By
Learning a Formula of Interpretability to Learn Interpretable Formulas
v1v2 (latest)

Learning a Formula of Interpretability to Learn Interpretable Formulas

23 April 2020
M. Virgolin
A. D. Lorenzo
Eric Medvet
Francesca Randone
ArXiv (abs)PDFHTML

Papers citing "Learning a Formula of Interpretability to Learn Interpretable Formulas"

9 / 9 papers shown
Title
A Sim2Real Approach for Identifying Task-Relevant Properties in
  Interpretable Machine Learning
A Sim2Real Approach for Identifying Task-Relevant Properties in Interpretable Machine Learning
Eura Nofshin
Esther Brown
Brian Lim
Weiwei Pan
Finale Doshi-Velez
101
0
0
31 May 2024
Social Interpretable Reinforcement Learning
Social Interpretable Reinforcement Learning
Leonardo Lucio Custode
Giovanni Iacca
OffRL
239
2
0
27 Jan 2024
Differentiable Genetic Programming for High-dimensional Symbolic
  Regression
Differentiable Genetic Programming for High-dimensional Symbolic Regression
Peng Zeng
Xiaotian Song
Andrew Lensen
Yuwei Ou
Yanan Sun
Mengjie Zhang
Jiancheng Lv
84
3
0
18 Apr 2023
Symbolic Regression is NP-hard
Symbolic Regression is NP-hard
M. Virgolin
S. Pissis
157
64
0
03 Jul 2022
Less is More: A Call to Focus on Simpler Models in Genetic Programming
  for Interpretable Machine Learning
Less is More: A Call to Focus on Simpler Models in Genetic Programming for Interpretable Machine Learning
M. Virgolin
Eric Medvet
Tanja Alderliesten
Peter A. N. Bosman
60
6
0
05 Apr 2022
Contemporary Symbolic Regression Methods and their Relative Performance
Contemporary Symbolic Regression Methods and their Relative Performance
William La Cava
Patryk Orzechowski
Bogdan Burlacu
Fabrício Olivetti de Francca
M. Virgolin
Ying Jin
M. Kommenda
J. Moore
207
263
0
29 Jul 2021
Model Learning with Personalized Interpretability Estimation (ML-PIE)
Model Learning with Personalized Interpretability Estimation (ML-PIE)
M. Virgolin
A. D. Lorenzo
Francesca Randone
Eric Medvet
M. Wahde
101
31
0
13 Apr 2021
Evolutionary learning of interpretable decision trees
Evolutionary learning of interpretable decision trees
Leonardo Lucio Custode
Giovanni Iacca
OffRL
95
41
0
14 Dec 2020
Genetic Programming is Naturally Suited to Evolve Bagging Ensembles
Genetic Programming is Naturally Suited to Evolve Bagging Ensembles
M. Virgolin
38
0
0
13 Sep 2020
1