ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.11231
  4. Cited By
Federated Stochastic Gradient Langevin Dynamics

Federated Stochastic Gradient Langevin Dynamics

23 April 2020
Khaoula El Mekkaoui
Diego Mesquita
P. Blomstedt
Samuel Kaski
    FedML
ArXivPDFHTML

Papers citing "Federated Stochastic Gradient Langevin Dynamics"

9 / 9 papers shown
Title
Embarrassingly Parallel GFlowNets
Embarrassingly Parallel GFlowNets
Tiago da Silva
Luiz Max Carvalho
Amauri Souza
Samuel Kaski
Diego Mesquita
44
1
0
05 Jun 2024
Bayesian Neural Network For Personalized Federated Learning Parameter
  Selection
Bayesian Neural Network For Personalized Federated Learning Parameter Selection
Mengen Luo
E. Kuruoglu
FedML
35
0
0
25 Feb 2024
Machine Learning and the Future of Bayesian Computation
Machine Learning and the Future of Bayesian Computation
Steven Winter
Trevor Campbell
Lizhen Lin
Sanvesh Srivastava
David B. Dunson
TPM
47
4
0
21 Apr 2023
Federated Averaging Langevin Dynamics: Toward a unified theory and new
  algorithms
Federated Averaging Langevin Dynamics: Toward a unified theory and new algorithms
Vincent Plassier
Alain Durmus
Eric Moulines
FedML
21
6
0
31 Oct 2022
Federated Learning with Uncertainty via Distilled Predictive
  Distributions
Federated Learning with Uncertainty via Distilled Predictive Distributions
Shreyansh P. Bhatt
Aishwarya Gupta
Piyush Rai
FedML
29
11
0
15 Jun 2022
Parallel MCMC Without Embarrassing Failures
Parallel MCMC Without Embarrassing Failures
Daniel Augusto R. M. A. de Souza
Diego Mesquita
Samuel Kaski
Luigi Acerbi
42
11
0
22 Feb 2022
On Convergence of Federated Averaging Langevin Dynamics
On Convergence of Federated Averaging Langevin Dynamics
Wei Deng
Qian Zhang
Yi Ma
Zhao Song
Guang Lin
FedML
30
16
0
09 Dec 2021
On the Convergence of Stochastic Gradient MCMC Algorithms with
  High-Order Integrators
On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators
Changyou Chen
Nan Ding
Lawrence Carin
40
159
0
21 Oct 2016
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
187
3,267
0
09 Jun 2012
1